Formulation and Characterization of Phycocyanin Microcapsules within Maltodextrin-Alginate

https://doi.org/10.22146/agritech.16752

Retno Ayu Kurniasih(1*), Lukita Purnamayati(2), Ulfah Amalia(3), Eko Nurcahya Dewi(4)

(1) Departemen Teknologi Hasil Perikanan, Fakultas Perikanan dan Ilmu Kelautan, Universitas Diponegoro, Jl. Prof. Soedarto, SH, Tembalang, Semarang 50275
(2) Departemen Teknologi Hasil Perikanan, Fakultas Perikanan dan Ilmu Kelautan, Universitas Diponegoro, Jl. Prof. Soedarto, SH, Tembalang, Semarang 50275
(3) Departemen Teknologi Hasil Perikanan, Fakultas Perikanan dan Ilmu Kelautan, Universitas Diponegoro, Jl. Prof. Soedarto, SH, Tembalang, Semarang 50275
(4) Departemen Teknologi Hasil Perikanan, Fakultas Perikanan dan Ilmu Kelautan, Universitas Diponegoro, Jl. Prof. Soedarto, SH, Tembalang, Semarang 50275
(*) Corresponding Author

Abstract


Phycocyanin is a source of natural blue dye which can be extracted from Spirulina sp. The main characteristics of phycocyanin are unstable by temperature and pH during processing and storage. Microencapsulation methods could be proposed to protect the phycocyanin from the external effect, where the types and concentration of encapsulant used may affect the characteristics of the result. The aim of this study was to determine the best formulation and characterization of phycocyanin microcapsules from Spirulina sp. with maltodextrin and alginate as an encapsulant. The microcapsules were produced using five different concentrations of alginate in maltodextrin, namely 0%; 0.2%; 0.4%; 0.6%; and 0.8% (w/w). The total encapsulant used was 10% of phycocyanin microparticle solution. The results showed that the increasing concentration of alginate could raise the levels of phycocyanin, moisture content, encapsulation efficiency, bulk density, blue intensity, and particle size, it also improved the morphology of the microcapsules. Phycocyanin microcapsules with alginate concentration of 0.6% and 9.4% maltodextrin had the highest phycocyanin content, encapsulation efficiency, and blue intensity.

Keywords


Maltodextrin-alginate; microcapsules; phycocyanin

Full Text:

PDF


References

Bakowska-Barczak, A.M. & Kolodziejczyk, P.P. (2011). Black currant polyphenols: their storage stability and microencapsulation. Industrial Crops and Products, 34. https://doi.org/10.1016/j.indcrop.2010.10.002.

Boussiba, S., & Richmond, A.E. (1979). Isolation and characterization of phycocyanins from the blue-green alga Spirulina platensis. Archives of Microbiology, 120. https://doi.org/ 10.1007/BF00409102.

Briones, A.V., & Sato, T. (2010). Encapsulation of glucose oxidase (GOD) in polyelectrolyte complexes of chitosan-carrageenan. Reactive & Functional Polymers, 70. https://doi.org/10.1016/j.reactfunctpolym.2009.09.009.

Cakrawati, D. & Handayani, M.N. (2017). Microencapsulation of limonin from orange juice waste using maltodextrin. IOP Conf. Series: Materials Science and Engineering, 180. http://doi.org/10.1088/1757-899X/180/1/012096.

Caparino, O., Tang. J., Nindo, C. I., Sablani, S. S., Powers, J. R., & Fellman, J. K. (2012). Effect of drying methods on the physical properties and microstructures of mango (Philippine 'Carabao' var.) powder. Journal of Food Engineering, 111. https://doi.org/10.1016/j.jfoodeng.2012.01.010.

Carvajal, M.X.Q., Diaz, B.H.C., Torres, L.S.M., Perez, J.J.C., Beltran, L.A., Aparicio, A.J., & Lopez, G.F.G. (2010). Nanoencapsulation: a new trend in food engineering processing. Food Engineering Reviews, 2. https://doi.org/10.1007/s12393-009-9012-6.

Carvalho, A.G.S., Silva, V.M., & Hubinger, M.D. (2014). Microencapsulation by spray drying of emulsified green coffee oil with two-layered membranes. Food Research International, 61. https://doi.org/10.1016/j.foodres.2013.08.012.

Chavarri, M., Maranon, I., Ares, R., Ibanez, F.C., Marzo, F., & Villaran, M.C. (2010). Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. Int. J. Food Microbiol, 142. https://doi.org/10.1016/j.ijfoodmicro.2010.06.022.

Dewi, E.N., Purnamayati, L., & Kurniasih, R.A. (2016). Antioxidant activities of phycocyanin microcapsules using maltodextrin and carrageenan as coating materials. Jurnal Teknologi, 78. https://doi.org/10.11113/jt.v78.8151.

Dewi, E.N., Purnamayati, L., & Kurniasih, R.A. (2017). Physical characteristics of phycocyanin from spirulina microcapsules using different coating materials with freeze drying method. IOP Conf. Series: Earth and Environmental Science, 55. https://doi.org/10.1088/1755-1315/55/1/012060.

Duangsee, R., Phoopat, N., & Ningsanond, S. (2009). Phycocyanin extraction from Spirulina platensis and extract stability under various pH and temperature. Asian Journal of Food and Agro-Industry, 2. https://www.cabdirect.org/cabdirect/abstract/20103303567.

Fang, Z. and Bhandari, B. (2011). Effect of spray drying and storage on the stability of bayberry polyphenols. Food Chemistry, 129. https://doi.org/10.1016/j.foodchem.2011.05.093.

Fazaeli, M., Emam-Djomeh, Z., Kalbasi Ashtari, A., & Omid, M. (2012). Effect of spray drying conditions and feed composition on the physical properties of black mulberry juice powder. Food Bioproducts Processing, 90. https://doi.org/10.1016/j.fbp.2012.04.006.

Fertah, M., Belfkira, A., Dahmane, E., Taourirte, M., & Brouillette, F. (2017). Extraction and characterization of sodium alginate from Moroccan Laminaria digitata brown seaweed. Arabian Journal of Chemistry, 10. https://doi.org/10.1016/j.arabjc.2014.05.003.

Hadiyanto, Suzery, M., Setyawan, D., Majid, D., & Sutanto, H. (2017). Encapsulation of phycocyanin-alginate for high stability and antioxidant activity. IOP Conf. Series: Earth and Environmental Science, 55. https://doi.org/10.1088/1755-1315/55/1/012030.

Harris, R., Lecumberri, E., Mateos-Aparicio, I., Mengibar, M., & Heras, M. (2011). Chitosan nanoparticles and microspheres for the encapsulation of natural antioxidant extracted from Ilex paraguariensis. Carbohydrate Polymers, 84. https://doi.org/10.1016/j.carbpol.2010.07.003.

Hermanto, R.F., Khasanah, L.U., Kawiji, Atmaka, W., Manuhara, G.J., & Utami, R. (2016). Physical characteristics of cinnamon oil microcapsule. IOP Conf. Series: Materials Science and Engineering, 107. http://doi.org/10.1088/1757-899X/107/1/012064.

Janiszewska, E. & Wlodarczyk, J. 2013. Influence of spary drying conditions on beetroot pigments retention after microencapsulation process. Acta Agrophysica, 20. http://www.acta-agrophysica.org/en/artykul/198.

Jensen, G.S., Drapeau, C., Lenninger, M., & Benson, K.F. (2016). Clinical safety of a high dose of phycocyanin-enriched aqueous extract from Arthrospira (Spirulina) platensis: results from a randomized, double-blind, placebo-controlled study with a focus on anticoagulant activity and platelet activation. Journal of Medicinal Food, 19. https://doi.org/10.1089/jmf.2015.0143.

Li, Y., Tang, B., Chen, J., & Lai, P. (2017). Microencapsulation of plum (Prunus salicina Lindl.) phenolics by spray drying technology and storage stability. Food Science and Technology. http://dx.doi.org/10.1590/1678-457X.09817.

Marcela, F., Lucia, C., Esther, F., & Elena, M. (2016). Microencapsulation of L-ascorbic acid by spray drying using sodium alginate as wall material. Journal of Encapsulation and Adsorption Sciences, 6. https://doi.org/10.4236/jeas.2016.61001.

Martelli, G., Folli, C., Visai, L., Daglia, M., & Ferrari, D. (2014). Thermal stability improvement of blue colorant C-phycocyanin from Spirulina platensis for food industry applications. Process Biochemistry, 49. http://dx.doi.org/10.1016/j.procbio.2013.10.008.

Martins, I. M., Barreiro, M. F., Coelho, M., & Rodrigues, A. E. (2014). Microencapsulation of essential oils with biodegradable polymeric carriers for cosmetic applications. Chemical Engineering Journal, 245. https://doi.org/10.1016/j.cej.2014.02.024.

Mirhojati, H., Sharayei, P., & Ghavidel, R.A. (2017). Microencapsulation of anthocyanin pigments obtained from seedless barberry (Berberis vulgaris L.) fruit using freeze drying. Iranian Food Science and Technology Research Journal, 13. https://doi.org/10.22067/ifstrj.v1396i3.58661.

Murali, S., Kar, A., Mohapatra, D., & Kalia, P. (2014). Encapsulation of black carrot juice using spray and freeze drying. Food Science and Technology International, 21. https://doi.org/10.1177/1082013214557843.

Najafi, M.N., Kadkhodaee, R., & Mortazavi, S.A. (2011). Effect of drying process and wall material on the properties of encapsulated cardamom oil. Food Biophysics, 6. https://doi.org/10.1007/s11483-010-9176-x.

Novianty, H., Darmadji, P., Pranoto, Y., & Suharwadji. (2015). Utilization of alginate as an encapsulation model of coconut shell liquid smoke. Marine Research in Indonesia, 40. http://dx.doi.org/10.14203/mri.v40i1.34.

Ozkan, G. & Bilek, S.E. (2014). Microencapsulation of natural food colourants. International Journal of Nutrition and Food Sciences, 3. https://doi.org/10.11648/j.ijnfs.20140303.13.

Parrarud, S. & Pranee, A. (2010). Microencapsulation of Zn-chlorophyll pigment from pandan leaf by spray drying and its characteristic. International Food Research Journal, 17.

Pitchaon, M., Tanawan, W., & Thepkunya, H. (2013). Tamarin kernel powder, gum arabic and maltodextrin as a novel combination for encapsulating agents of phenolic antioxidants. International Food Research Journal, 20.

Pitalua, E., Jimenez, M., Vernon-Carter, E.J., & Beristain, C.I. (2010). Antioxidative activity of microcapsules with beetroot juice using gum arabic as wall material. Food and Bioproducts Processing, 88. https://doi.org/10.1016/j.fbp.2010.01.002.

Ravichandran, K., Palaniraj, R., Saw, N.M.T., Gabr, A.M.M., Ahmed, A.R., Knorr, D., & Smetanska, I. (2014). Effects of different encapsulation agents and drying process on stability of betalains extract. Journal of Food Science Technology, 51. https://doi.org/10.1007/s13197-012-0728-6.

Ravi, M., Tentu, S., Baskar, G., Prasad, S.R., Raghavan, S., Jayaprakash, P., Jeyakanthan, J., Rayala, S.K., & Venkatraman, G. (2015). Molecular mecanishm of anti-cancer activity of phycocyanin in triple-negative breast cancer cells. BMC Cancer, 15. https://doi.org/10.1186/s12885-015-1784-x.

Shinde, U. & Nagarsenker, M. (2011). Microencapsulation of eugenol by gelatin-sodium alginate complex coacervation. Indian Journal of Pharmaceutical Sciences,73. https://doi.org/ 10.4103/0250-474X.93524.

Sedjati, S., Yudiati, E., & Suryono. (2012). Profil pigmen polar dan non polar mikroalga laut Spirulina sp. dan potensinya sebagai pewarna alami. Jurnal Ilmu Kelautan, 17. https://doi.org/10.14710/ik.ijms.17.3.176-182.

Sevda, S.B., & Rodrigues, L. (2011). The making of pomegranate wine using yeast immobilized on sodium alginate. African Journal of Food Science, 5.

Shekhar, T.C. & Anju, G. (2014). Antioxidant activity by DPPH radical scavenging method of Ageratum conyzoides Linn. leaves. American Journal of Ethnomedicine, 1. http://www.ajethno.com.

Soliman, E.A., El-Moghazy, A.Y., El-Din, M.S.M, & Massoud, M.A. (2013). Microencapsulation of Essential Oils within alginate: formulation and in vitro evaluation of antifungal activity. Journal of Encapsulation and Adsorption Sciences, 3. http://dx.doi.org/10.4236/jeas.2013.31006.

Sormoli, M.E., Islam, M.I., & Langrish, T.A.G. (2012). The effect of chitosan hydrogen bonding on lactose crystallinity During Spray drying. Journal of Food Engineering, 108. https://doi.org/10.1016/j.jfoodeng.2011.09.011.

Kha, T.C., Nguyen, M.H., & Roach, P.D. (2010). Effects of spray drying conditions on the physicochemical and antioxidant properties of the Gac (Momordica cochinchinensis) fruit aril powder. Journal of Food Engineering, 98. https://doi.org/10.1016/j.jfoodeng.2010.01.016.

Venil, C.K., Khasim, A.R., Aruldass, C.A., & Ahmad, W.A. (2016). Microencapsulation of flexirubin-type pigment by spray drying: characterization and antioxidant activity. International Biodeterioration & Biodegradation, 113. https://doi.org/10.1016/j.ibiod.2016.01.014.

Wilkowska, A., Ambroziak, W., Czyzowska, A., & Adamiec, J. (2016). Effect of microencapsulation by spray-drying and freeze-drying technique on the antioxidant properties of Blueberry (Vaccinium myrtillus) juice polyphenolic compounds. Pol. J. Food Nutr. Sci, 66. https://doi.org/10.1515/pjfns-2015-0015.

Zheng, J., Inoguchi, T., Sasaki, S., Maeda, Y., McCarty, M.F., Fujii, M., Ikeda, N., Kobayashi, K., Sonoda, N., &Takayanagi, R. (2012). Phycocyanin and phycocyanobilin from Spirulina platensis protect againts diabetic nephropathy by inhibiting oxidative stress. Am J Physiol Regul Integr Comp Physiol, 304. https://doi.org/10.1152/ajpregu.00648.2011.



DOI: https://doi.org/10.22146/agritech.16752

Article Metrics

Abstract views : 5261 | views : 4667

Refbacks

  • There are currently no refbacks.




Copyright (c) 2018 Retno Ayu Kurniasih, Lukita Purnamayati, Ulfah Amalia, Eko Nurcahya Dewi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

agriTECH has been Indexed by:


agriTECH (print ISSN 0216-0455; online ISSN 2527-3825) is published by Faculty of Agricultural Technology, Universitas Gadjah Mada in colaboration with Indonesian Association of Food Technologies.


website statisticsView My Stats