Effect of Priming on Brassica rapa subsp. chinensis (Bok Choy) Seeds Germination

https://doi.org/10.22146/agritech.74856

Chooi Lin Phooi(1), Elisa Azura Azman(2*), Roslan Ismail(3)

(1) Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang
(2) Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang
(3) Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang; Institut Tanah dan Ukur Negara (INSTUN), Muallim, Perak
(*) Corresponding Author

Abstract


Brassica rapa subsp. Chinensis, commonly known as Bok Choy, is a nutrient-rich vegetable with substantial antioxidant content. Therefore, this study aimed to evaluate the effect of hydropriming and bio-nutri-priming using Sandwich compost leachate on seed germination, SPAD reading, and dry matter accumulation in 280 dwarf variants of Bok Choy seeds sourced from Green Eagle. The experimental process involved hydropriming with tap water, bio-nutri-priming using 0.2% Sandwich compost leachate, and a control group cultivated in soil without priming. A complete randomization design (CRD) with three replications assessed seed germination performance, SPAD, root and shoot dry matter, and root-to-shoot ratio. While there was no significant difference in the germination percentage (88.35±1.13%), the entire priming seeds exhibited a 2-day peak germination period, compared to 3 days for the non-priming counterparts. Bio-nutri-priming seeds showed faster median and mean germination times due to enhanced nutrient uptake. They further displayed high SPAD readings, suggesting a lack of toxic compounds. The dry matter production of all treated Bok Choy was similar because administered treatments did not interfere with plant growth and development. Therefore, applying bio-nutri-priming using Sandwich compost leachate positively affected seed germination performance, warranting its recommendation as a seeds priming solution.


Keywords


Animal and plant-based food waste; biopriming; bokashi; growth; leachate; seeds soaking; raw and cooked food waste

Full Text:

PDF


References

Afzal, I., Rehman, H. U., Naveed, M., & Basra, S. M. A. (2016). Recent advances in seed enhancements. In New Challenges in Seed Biology - Basic and Translational Research Driving Seed Technology. InTech. https://doi.org/10.5772/64791

Ali, O., El-Tahlawy, Y., & Abdel-Gwad, S. (2018). Impact of compost tea types application on germination, nodulation, morphological characters, and yield of two lentil cultivars. Egyptian Journal of Agronomy, 0(0), 1–19. https://doi.org/10.21608/agro.2018.5678.1126

Alias, N. S. B., Billa, L., Muhammad, A., & Singh, A. (2018). Priming and temperature effects on germination and early seedling growth of some Brassica spp. Acta Horticulturae, 1225, 407–414. https://doi.org/10.17660/ACTAHORTIC.2018.1225.57

Arancon, N. Q., Pant, A., Radovich, T., Hue, N. v., Potter, J. K., & Converse, C. E. (2012). Seed germination and seedling growth of tomato and lettuce as affected by vermicompost water extracts (teas). HortScience, 47(12), 1722–1728. https://doi.org/10.21273/hortsci.47.12.1722

Aravind, J., Vimala Devi, S., Radhamani, J., Jacob, S. R., & Kalyani, S. (2019). germinationmetrics: Seed germination indices and curve fitting. Retrieved from https://aravind-j.github.io/germinationmetrics/articles/Introduction.html

Baldotto, M. A. & Baldotto, L. E. B. (2016). Initial performance of corn in response to treatment of seeds with humic acids isolated from bokashi. Revista Ceres, 63(1–62), 62–67. https://doi.org/10.1590/0034-737X201663010009

Benazzouk, S., Djazouli, Z.-E., & Lutts, S. (2019). Vermicompost leachate as a promising agent for priming and rejuvenation of salt-treated germinating seeds in Brassica napus. Communications in Soil Science and Plant Analysis, 50(11), 1344–1357. https://doi.org/10.1080/00103624.2019.1614608

Bieser, J. M. H., Al-Zayat, M., Murtada, J., & Thomas, S. C. (2022). Biochar mitigation of allelopathic effects in three invasive plants: evidence from seed germination trials. Canadian Journal of Soil Science, 102(1), 213–224. https://doi.org/10.1139/CJSS-2020-0160/SUPPL_FILE/CJSS-2020-0160SUPPLA.DOCX

Bócoli, F. A., Marcon, J. A., Izidoro, M., Bortolon, P. de T., de OLIVEIRA, S. E. R., Spalevic, V., & de SOUZA, P. S. (2020). Bokashi use in the passionfruit (Passiflora edulis l.) germination and initial growth. Agriculture and Forestry, 66(4), 101–111. https://doi.org/10.17707/AgricultForest.66.4.08

Bona, D., Scrinzi, D., Tonon, G., Ventura, M., Nardin, T., Zottele, F., … Silvestri, S. (2022). Hydrochar and hydrochar co-compost from OFMSW digestate for soil application: 2. agro-environmental properties. Journal of Environmental Management, 312, 114894. https://doi.org/10.1016/J.JENVMAN.2022.114894

Callan, N. W. (1990). Bio-priming seed treatment for biological control of Pythium ultimum preemergence damping-off in sh2 sweet corn. Plant Disease, 74(5), 368. https://doi.org/10.1094/PD-74-0368

Campbell, W. R. & Hanna, M. I. (1937). The determination of nitrogen by modified Kjeldahl methods. Journal of Biological Chemistry, 119(1), 1–7. https://doi.org/10.1016/S0021-9258(18)74426-8

Chhajed, S., Mostafa, I., He, Y., Abou-Hashem, M., El-Domiaty, M., & Chen, S. (2020). Glucosinolate biosynthesis and the glucosinolate–myrosinase system in plant defense. Agronomy, 10(11), 1786. https://doi.org/10.3390/agronomy10111786

Chitra, P., & Jijeesh, C. M. (2021). Biopriming of seeds with plant growth promoting bacteria Pseudomonas fluorescens for better germination and seedling vigour of the East Indian sandalwood. New Forests, 52(5), 829–841. https://doi.org/10.1007/s11056-020-09823-0

Chu, T. N., Tran, B. T. H., van Bui, L., & Hoang, M. T. T. (2019). Plant growth-promoting rhizobacterium Pseudomonas PS01 induces salt tolerance in Arabidopsis thaliana. BMC Research Notes, 12(1), 11. https://doi.org/10.1186/s13104-019-4046-1

Coolbear, P., Francis, A., & Grierson, D. (1984). The effect of low temperature pre-sowing treatment on the germination performance and membrane integrity of artificially aged tomato seeds. Journal of Experimental Botany, 35(11), 1609–1617. https://doi.org/10.1093/jxb/35.11.1609

Czabator, F. J. (1962). Germination value: an index combining speed and completeness of pine seed germination. Forest Science, 8(4), 386–396. https://doi.org/10.1093/forestscience/8.4.386

Deshmukh, A. J., Jaiman, R. S., Bambharolia, R. P., & Patil, V. A. (2020). Seed biopriming– a review. International Journal of Economic Plants, 7(1), 038–043. https://doi.org/10.23910/2/2020.0359

George, D. W. (1961). Influence of germination temperature on the expression of post-harvest dormancy in wheat. Crop Science Abstracts, 1961(Western Society of Crop Science Annual Meeting), 15.

Ghorbanpour, M., & Hatami, M. (2014). Biopriming of Salvia officinalis seed with growth promoting Rhizobacteria affects invigoration and germination indices. J. Biol. Environ. Sci, 8(22), 29–36.

Green Eagle Seeds. (2022). Pak choy. Retrieved May 23, 2022, from Green Eagle Seeds website: http://greeneagle.com.my/

Higa, T. (2001). Effective microorganisms in the context of Kyusei nature farming – a technology for the future. International Conference on Kyusei Nature Farming.

Higa, T. & Parr, J. F. (1994). Beneficial and effective for a sustainable agriculture. Agriculture, (808), 1–16.

Ibrahim, H. A. K. & Balah, M. A. aziz. (2018). Study the use of compost tea in weed suppression. International Journal of Environmental Research, 12(5), 609–618. https://doi.org/10.1007/s41742-018-0119-6

ISTA. (2015). Chapter 5: The germination test. International Rules for Seed Testing, 2015(1), 5-1-5–56. https://doi.org/10.15258/istarules.2015.05

Jabatan Pertanian Malaysia. (2019). Statistik tanaman sayur-sayuran dan tanaman ladang.

James, R. A., Rivelli, A. R., Munns, R., & Caemmerer, S. von. (2002). Factors affecting CO2 assimilation, leaf injury and growth in salt-stressed durum wheat. Functional Plant Biology, 29(12), 1393. https://doi.org/10.1071/FP02069

Johnson, R. & Puthur, J. T. (2021). Seed priming as a cost effective technique for developing plants with cross tolerance to salinity stress. Plant Physiology and Biochemistry, 162, 247–257. https://doi.org/10.1016/j.plaphy.2021.02.034

Lutts, S., Benincasa, P., Wojtyla, L., Kubala, S., Pace, R., Lechowska, K., … Garnczarska, M. (2016). Seed priming: new comprehensive approaches for an old empirical technique. In New Challenges in Seed Biology - Basic and Translational Research Driving Seed Technology. InTech. https://doi.org/10.5772/64420

Mahmood, A. & Kataoka, R. (2018). Potential of biopriming in enhancing crop productivity and stress tolerance. Advances in Seed Priming, 127–145. https://doi.org/10.1007/978-981-13-0032-5_9/TABLES/3

Mahmood, A., Turgay, O. C., Farooq, M., & Hayat, R. (2016). Seed biopriming with plant growth promoting rhizobacteria: a review. FEMS Microbiology Ecology, 92(8), 112. https://doi.org/10.1093/FEMSEC/FIW112

Mehlich, A. (1984). Mehlich 3 soil test extractant: a modification of mehlich 2 extractant. Communications in Soil Science and Plant Analysis, 15(12), 1409–1416. https://doi.org/10.1080/00103628409367568

Melville, A. H., Galletta, G. J., Draper, A. D., & Ng, T. J. (1980). Seed germination and early seedling vigor in progenies of inbred strawberry selections. HortScience.

Mendiburu, F. de, & Yaseen, M. (2020). agricolae: Statistical Procedures for Agricultural Research.

Miao, H., Zeng, W., Wang, J., Zhang, F., Sun, B., & Wang, Q. (2021). Improvement of glucosinolates by metabolic engineering in Brassica crops. ABIOTECH, 2(3), 314–329. https://doi.org/10.1007/s42994-021-00057-y

Minca, K. K., Basta, N. T., & Scheckel, K. G. (2013). Using the mehlich‐3 soil test as an inexpensive screening tool to estimate total and bioaccessible lead in urban soils. Journal of Environmental Quality, 42(5), 1518–1526. https://doi.org/10.2134/jeq2012.0450

Mitra, D., Mondal, R., Khoshru, B., Shadangi, S., das Mohapatra, P. K., & Panneerselvam, P. (2021). Rhizobacteria mediated seed bio-priming triggers the resistance and plant growth for sustainable crop production. Current Research in Microbial Sciences, 2, 100071. https://doi.org/10.1016/j.crmicr.2021.100071

Mousavi, M. & Omidi, H. (2019). Seed priming with bio-priming improves stand establishment, seed germination and salinity tolerance in canola cultivar (Hayola 401). Iranian Journal of Plant Physiology, 9(3), 2807–2817.

Muhammad, I., Kolla, M., Volker, R., & Günter, N. (2015). Impact of nutrient seed priming on germination, seedling development, nutritional status and grain yield of maize. Journal of Plant Nutrition, 38(12), 1803–1821. https://doi.org/10.1080/01904167.2014.990094

Murphy, J. & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27(C), 31–36. https://doi.org/10.1016/S0003-2670(00)88444-5

Nciizah, A. D., Rapetsoa, M. C., Wakindiki, I. I., & Zerizghy, M. G. (2020). Micronutrient seed priming improves maize (Zea mays) early seedling growth in a micronutrient deficient soil. Heliyon, 6(8), e04766. https://doi.org/10.1016/j.heliyon.2020.e04766

Ngoma, L., Esau, B., & Babalola, O. O. (2013). Isolation and characterization of beneficial indigenous endophytic bacteria for plant growth promoting activity in Molelwane Farm, Mafikeng, South Africa. African Journal of Biotechnology, 12(26), 4105–4114. https://doi.org/10.4314/ajb.v12i26.

Olle, M. (2020). Short communication: The improvement of the growth of tomato transplants by bokashi tea. Agraarteadus, 31(1), 70–73. https://doi.org/10.15159/JAS.20.10

Pandey, P. K., Singh, S., Singh, M. C., Singh, A. K., Pandey, P., Pandey, A. K., … DPatidar, R. K. (2017). Inside the Plants: Bacterial Endophytes and their Natural Products. International Journal of Current Microbiology and Applied Sciences, 6(6), 33–41. https://doi.org/10.20546/ijcmas.2017.606.003

Paparella, S., Araújo, S. S., Rossi, G., Wijayasinghe, M., Carbonera, D., & Balestrazzi, A. (2015). Seed priming: state of the art and new perspectives. Plant Cell Reports, 34(8), 1281–1293. https://doi.org/10.1007/s00299-015-1784-y

Park, C. H., Park, Y. E., Yeo, H. J., Kim, J. K., & Park, S. U. (2020). Effects of light-emitting diodes on the accumulation of phenolic compounds and glucosinolates in Brassica juncea sprouts. Horticulturae, 6(4), 77. https://doi.org/10.3390/horticulturae6040077

Phooi, C. L., Azman, E. A., Ismail, R., & Shahruddin, S. (2022). Effect of Sandwich compost leachate on Allium tuberosum seed germination. Pertanika Journal of Tropical Agricultural Science, 45(2), 481–490. https://doi.org/10.47836/pjtas.45.2.09

Ranal, M. A. & Santana, D. G. de. (2006). How and why to measure the germination process? Revista Brasileira de Botânica, 29(1), 1–11. https://doi.org/10.1590/S0100-84042006000100002

Roslan, M. A. M., Zulkifli, N. N., Sobri, Z. M., Zuan, A. T. K., Cheak, S. C., & Abdul Rahman, N. A. (2020). Seed biopriming with P- and K-solubilizing Enterobacter hormaechei sp. improves the early vegetative growth and the P and K uptake of okra (Abelmoschus esculentus) seedling. PLOS ONE, 15(7), e0232860. https://doi.org/10.1371/journal.pone.0232860

Ruttanaruangboworn, A., Chanprasert, W., Tobunluepop, P., & Onwimol, D. (2017). Effect of seed priming with different concentrations of potassium nitrate on the pattern of seed imbibition and germination of rice (Oryza sativa L.). Journal of Integrative Agriculture, 16(3), 605–613. https://doi.org/10.1016/S2095-3119(16)61441-7

Sakit ALHaithloul, H. A., Khan, M. I., Musa, A., Ghoneim, M. M., Aysh ALrashidi, A., Khan, I., … Soliman, M. H. (2022). Phytotoxic effects of Acacia saligna dry leachates on germination, seedling growth, photosynthetic performance, and gene expression of economically important crops. PeerJ, 10, e13623. https://doi.org/10.7717/peerj.13623

Santana, D. G., & Ranal, M. A. (2004). Análise Da Germinação: Um Enfoque Estatístico. Brasília: Universidade de Brasília.

Sarkar, D., Rakshit, A., Al-Turki, A. I., Sayyed, R. Z., & Datta, R. (2021). Connecting bio-priming approach with integrated nutrient management for improved nutrient use efficiency in crop species. Agriculture, 11(4), 372. https://doi.org/10.3390/AGRICULTURE11040372

Sarkar, D., Sankar, A., Devika, O. S., Singh, S., Shikha, Parihar, M., … Datta, R. (2021). Optimizing nutrient use efficiency, productivity, energetics, and economics of red cabbage following mineral fertilization and biopriming with compatible rhizosphere microbes. Scientific Reports, 11(1), 1–14. https://doi.org/10.1038/s41598-021-95092-6

Sharma, Y., Fagan, J., & Schaefer, J. (2019). Influence of organic pre-sowing seed treatments on germination and growth of rosemary (Rosmarinus officinalis L.). Biological Agriculture & Horticulture, 36(1), 35–43. https://doi.org/10.1080/01448765.2019.1649193

Singh, S., Singh, U. B., Malviya, D., Paul, S., Sahu, P. K., Trivedi, M., … Saxena, A. K. (2020). Seed biopriming with microbial inoculant triggers local and systemic defense responses against Rhizoctonia solani causing banded leaf and sheath blight in maize (Zea mays L.). International Journal of Environmental Research and Public Health, 17(4), 1396. https://doi.org/10.3390/ijerph17041396

Sisodia, A., Padhi, M., Pal, A. K., Barman, K., & Singh, A. K. (2018). Seed priming on germination, growth and flowering in flowers and ornamental trees. In Advances in Seed Priming (pp. 263–288). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-13-0032-5_14

Sivakumar, T., Ambika, S., & Balakrishnan, K. (2017). Biopriming of rice seed with phosphobacteria for enhanced germination and vigour. ORYZA- An International Journal on Rice, 54(3), 346. https://doi.org/10.5958/2249-5266.2017.00048.0

Šourková, M., Adamcová, D., Zloch, J., Skutnik, Z., & Vaverková, M. D. (2020). Evaluation of the phytotoxicity of leachate from a municipal solid waste landfill: the case study of bukov landfill. Environments, 7(12), 111. https://doi.org/10.3390/environments7120111

Sutariati, G. A. K., Khaeruni, A., Muhidin, Madiki, A., Rakian, T. C., Mudi, L., & Fadillah, N. (2019). Seed biopriming with indigenous endophytic bacteria isolated from Wakatobi rocky soil to promote the growth of onion (Allium ascalonicum L.). IOP Conference Series: Earth and Environmental Science, 260(1), 012144. IOP Publishing. https://doi.org/10.1088/1755-1315/260/1/012144

Toribio, A. J., Jurado, M. M., Suárez-Estrella, F., López, M. J., López-González, J. A., & Moreno, J. (2021). Seed biopriming with cyanobacterial extracts as an eco-friendly strategy to control damping off caused by Pythium ultimum in seedbeds. Microbiological Research, 248, 126766. https://doi.org/10.1016/j.micres.2021.126766

Usmani, Z., Sharma, M., Awasthi, A. K., Sharma, G. D., Cysneiros, D., Nayak, S. C., … Gupta, V. K. (2021). Minimizing hazardous impact of food waste in a circular economy – Advances in resource recovery through green strategies. Journal of Hazardous Materials, 416, 126154. https://doi.org/10.1016/j.jhazmat.2021.126154

Wang, G., Yang, Y., Kong, Y., Ma, R., Yuan, J., & Li, G. (2022). Key factors affecting seed germination in phytotoxicity tests during sheep manure composting with carbon additives. Journal of Hazardous Materials, 421, 126809. https://doi.org/10.1016/j.jhazmat.2021.126809

Yaseen, A. A., & Takacs-Hajos, M. (2022). Evaluation of moringa (Moringa oleifera Lam.) leaf extract on bioactive compounds of lettuce (Lactuca sativa L.) grown under glasshouse environment. Journal of King Saud University - Science, 34(4), 101916. https://doi.org/10.1016/J.JKSUS.2022.101916

Zulueta-Rodríguez, R., Hernández-Montiel, L. G., Murillo-Amador, B., Rueda-Puente, E. O., Capistrán, L. L., Troyo-Diéguez, E., & Córdoba-Matson, M. V. (2015). Effect of hydropriming and biopriming on seed germination and growth of two Mexican fir tree species in danger of extinction. Forests, 6(9), 3109–3122. https://doi.org/10.3390/f6093109



DOI: https://doi.org/10.22146/agritech.74856

Article Metrics

Abstract views : 310 | views : 108

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Chooi Lin Phooi, Elisa Azura Azman, Roslan Ismail

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

agriTECH has been Indexed by:


agriTECH (print ISSN 0216-0455; online ISSN 2527-3825) is published by Faculty of Agricultural Technology, Universitas Gadjah Mada in colaboration with Indonesian Association of Food Technologies.


website statisticsView My Stats