Phytase Production by Lactobacillus plantarum A1-E in Submerged and Solid-State Fermentation
Ade Erma Suryani(1*), Lusty Istiqomah(2), Ayu Septi Anggraeni(3), Anjar Windarsih Windarsih(4)
(1) Research Center for Food Technology and Processing, Research Organization for Agriculture and Food, National Research and Innovation Agency, Jl. Jogja-Wonosari Km. 31.5, Gading, Playen, Gunungkidul, Yogyakarta, 55861
(2) Research Center for Food Technology and Processing, Research Organization for Agriculture and Food, National Research and Innovation Agency, Jl. Jogja-Wonosari Km. 31.5, Gading, Playen, Gunungkidul, Yogyakarta, 55861
(3) Research Center for Food Technology and Processing, Research Organization for Agriculture and Food, National Research and Innovation Agency, Jl. Jogja-Wonosari Km. 31.5, Gading, Playen, Gunungkidul, Yogyakarta, 55861
(4) Research Center for Food Technology and Processing, Research Organization for Agriculture and Food, National Research and Innovation Agency, Jl. Jogja-Wonosari Km. 31.5, Gading, Playen, Gunungkidul, Yogyakarta, 55861
(*) Corresponding Author
Abstract
Enzyme activity is influenced by several important factors, including the amount and type of substrate, solvent type, pH, temperature, presence of inhibitory and activating ions, and concentration of enzymes. Therefore, this research aimed to evaluate phytase production from Lactobacillus plantarum A1-E using submerged (SmF) and solid-state fermentation (SSF). Phytase production was determined using SmF with fructose and sucrose as the primary carbon sources at concentrations of 4.5%, 6%, and 7.5%. Additionally, SSF was conducted using three distinct substrates, including soybean Meal, rice Bran, and pollard. The results indicated that the highest phytase activity was achieved through SSF when rice bran was used as a substrate (88.48 U/mL or 4.65 U/mg). The use of 4.5% sucrose as a carbon source in the SmF technique showed the highest specific phytase activity (4.38 U/mg) compared to other carbon sources at various concentrations. The addition of metal ions showed that Fe 2+ , Mn 2+ , and Co 2+ at concentrations of 1-5 mM, Mg 2+ and Zn 2+ at concentrations of 3-5 mM, and Ca 2+ at a concentration of 3 mM acted as activators that increased phytase activity compared to control. Meanwhile, Mg 2+ and Zn 2+ at concentrations 1-2 mM were inhibitors.
Keywords
Full Text:
PDFReferences
Abedi, S. Z., Yeganeh, S., Moradian, F., & Ouraji, H. (2019). Isolation and Identification of Lactobacillus strains from dairy products and evaluation of carbon sources effects on bacterial growth and phytase activity: supplement for fish feed. J. Agr. Sci. Tech., 21(4), 845–855.
Aigul, K., Zhanara, S., Nurlan, A., & Zhazira, S. (2015). Effect of nutrient components for phytase production by Aspergillus niger. Austrian Journal of Technical and Natural Sciences, 7–10.
Amritha, G. K., Halami, P. M., & Venkateswaran, G. (2017). Phytate dephosphorylation by Lactobacillus pentosus CFR3. International Journal of Food Science and Technology, 52(7), 1552–1558. https://doi.org/10.1111/ijfs.13407
Azeem, M., Riaz, A., Chaudhary, A. N., Hayat, R., Hussain, Q., Tahir, M. I., & Imran, M. (2015). Microbial phytase activity and their role in organic P mineralization. Archives of Agronomy and Soil Science, 61(6), 751–766. https://doi.org/10.1080/03650340.2014.963796
Boonchoo, Kr., Puseenam, A., Kocharin, K., Tanapongpipat, S., & Roongsawang N. (2019). Sucrose inducible heterologous expression of phytase in high cell density cultivation of the thermotolerant
methylotrophic yeast Ogataea thermomethanolica. FEMS Microbiology Letters, 366(5), 1-7.
https://doi.org/10.1093/femsle/fnz052
Cohort, C. (2008). CoStat - Statistics Software. In CoSTAT Version 6.400 Copyright 1998-2008: Vol. Cohort Sof (Issue (USA: Lighthouse Ave, Montere, CA.93940)., pp. 1–2).
Damayanti, E., Ratisiwi, F. N., Istiqomah, L., Sembiring, L., & Febrisiantosa, A. (2017). Phytate degrading activities of lactic acid bacteria isolated from traditional fermented food. AIP Conference Proceedings, 1823. https://doi.org/10.1063/1.4978126
De Angelis, M., Gallo, G., Corbo, M. R., McSweeney, P. L. H., Faccia, M., Giovine, M., & Gobbetti, M. (2003). Phytase activity in sourdough lactic acid bacteria: Purification and characterization of a phytase from Lactobacillus sanfranciscensis CB1. International Journal of Food Microbiology, 87(3), 259–270. https://doi.org/10.1016/S0168-1605(03)00072-2
Demir, Y., Dikbaş, N., & Beydemir, Ş. (2018). Purification and biochemical characterization of phytase enzyme from Lactobacillus coryniformis (MH121153). Molecular Biotechnology, 60(11), 783–790. https://doi.org/10.1007/s12033-018-0116-1
El-Shishtawy, R. M., Mohamed, S. A., Asiri, A. M., Gomaa, A. bakr M., Ibrahim, I. H., & Al-Talhi, H. A. (2014). Solid fermentation of wheat bran for hydrolytic enzymes production and saccharification content by a local isolate Bacillus megatherium. BMC Biotechnology, 14, 1–8. https://doi.org/10.1186/1472-6750-14-29
El Gindy, A. A., Ibrahim, Z. M., Ali, U. F., & El Mahdy, O. M. (2009). Extracellular Phytase production by solid-state cultures of Malbranchea sulfurea and Aspergillus Niveus on cost-effective medium. Journal of Agriculture and Biological Sciences, 5(1), 42–62.
Gaind, S. & Singh, S. (2015). Production, purification and characterization of neutral phytase from thermotolerant Aspergillus flavus ITCC 6720. International Biodeterioration & Biodegradation, 99, 15-22.
Gomez, K. A., & Gomez, A. A. (2010). Statistical procedures for agricultural research. (2010). Indonesia: University of Indonesia – Press, Jakarta. Indonesian Version, 2 ed, 1–690.
Handa, V., Sharma, D., Kaur, A., & Arya, S. K. (2020). Biotechnological applications of microbial phytase and phytic acid in food and feed industries. Biocatalysis and Agricultural Biotechnology, 25(December 2019). https://doi.org/10.1016/j.bcab.2020.101600
Jatuwong, K., Suwannarach, N., Kumla, J., Penkhrue, W., Kakumyan, P., & Lumyong, S. (2020). Bioprocess for production, characteristics, and biotechnological applications of fungal phytases. Frontiers in Microbiology, 11(February), 1–18. https://doi.org/10.3389/fmicb.2020.00188
Kłosowski, G., Mikulski, D., & Jankowiak, O. (2018). Extracellular phytase production by the wine yeast S. Cerevisiae (Finarome strain) during submerged fermentation. Molecules, 23(4), 1–12. https://doi.org/10.3390/molecules23040848
Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265–275. https://doi.org/10.1016/s0021-9258(19)52451-6
Liu, C., Yang, C., Yang, Q., Wang, J., Liu Y. (2021). Effect of divalent metals on phytase activity and enzymatic kinetics of as-hyperaccumulation ferns. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 71(2), 112-123. https://doi.org/10.1080/09064710.2020.1856917
Mandviwala, T. N., & Khire, J. M. (2000). Production of high activity thermostable phytase from thermotolerant Aspergillus niger in solid-state fermentation. Journal of Industrial Microbiology and Biotechnology, 24(4), 237–243. https://doi.org/10.1038/sj.jim.2900811
McKinney, K., Combs, J., Becker, P., Humphries, A., Filer, K., & Vriesekoop, F. (2015). Optimization of phytase production from Escherichia coli by altering solid-state fermentation conditions. Fermentation, 1(1), 13–23. https://doi.org/10.3390/fermentation1010013
Mehak, W., Zahra, S. M. R., Hussain, Z., Shahid, M., & Shahid, B. (2019). Production, purification, characterization and kinetic studies of phytase from Enterococcus and Streptococcus spp using submerged fermentation. Bioscience Research, 18(2), 1826–1837.
Palacios, M. C., Haros, M., Rosell, C. M., & Sanz, Y. (2005). Characterization of an acid phosphatase from Lactobacillus pentosus: Regulation and biochemical properties. Journal of Applied Microbiology, 98(1), 229–237. https://doi.org/10.1111/j.1365-2672.2004.02447.x
Penidez, S. H. S., Velasco, M. A. V., Gerez, C. L., & Rollán, G C. (2020). Partial characterization and purification of phytase from Lactobacillus plantarum CRL1964 isolated from pseudocereals. Journal of Basic Microbiology, 60(9), 787–798. https://doi.org/10.1002/jobm.202000236
Qasim, S. S., Shakir, K. A., & Shaibani, A. B. A. (2016). Isolation, Screening and production of phytate degrading enzyme (phytase) from local fungi isolate. The Iraqi Journal of Agricultural Sciences, 47(February), 121–128.
Roopesh, K., Ramachandran, S., Nampoothiri, K. M., Szakacs, G., & Pandey, A. (2006). Comparison of phytase production on wheat bran and oilcake in solid-state fermentation by Mucor racemosus. Bioresource Technology, 97(3), 506–511. https://doi.org/10.1016/j.biortech.2005.02.046
Seidavi, A., Azizi, M., Swelum, A. A., Abd El-Hack, M. E., & Naiel, M. A. (2021). Practical application of some common agro-processing wastes in poultry diets. World's Poultry Science Journal, 77(4), 913-927.
Sharma, R., Kumar, P., Kaushal, V., Das, R., & Kumar Navani, N. (2018). A novel protein tyrosine phosphatase like phytase from Lactobacillus fermentum NKN51: Cloning, characterization, and application in mineral release for food technology applications. Bioresource Technology, 249(July 2018), 1000–1008. https://doi.org/10.1016/j.biortech.2017.10.106
Shivanna, G. B., & Venkateswaran, G. (2014). Phytase production by Aspergillus niger CFR 335 and Aspergillus ficuum SGA 01 through submerged and solid-state fermentation. The Scientific World Journal, 2014, 1–6. https://doi.org/10.1155/2014/392615
Singh, B., & Satyanarayana, T. (2011). Microbial phytases in phosphorus acquisition and plant growth promotion. Physiology and Molecular Biology of Plants, 17(2), 93–103. https://doi.org/10.1007/s12298-011-0062-x
Singh, N. K., Joshi, D. K., & Gupta, R. K. (2013). Isolation of phytase-producing bacteria and optimization of phytase production parameters. Jundishapur Journal of Microbiology, 6(5). https://doi.org/10.5812/jjm.6419
Su, L-W., Cheng, Y-H., Hsiao F. S-H., Han J-C., Yu, Y-H. (2018). Optimization of mixed snolid-state fermentation of soybean meal by Lactobacillus species and Clostridium butyricum. Polish Journal of Microbiology, 67 (3), 297-305. https://doi.org/10.21307/pjm-2018-035
Sugiharto, A. (2018). Phytase production by fungi based on palm oil mill effluent. IOP Conf. Ser.: Earth Environ. Sci. 166 012050. https://doi:10.1088/1755-1315/166/1/012050.
Sukma, A., Herwati, O., & Siswo, S. (2021). Optimization of solid‐state fermentation condition for crude protein enrichment of rice bran using Rhizopus oryzae in tray bioreactor. Indonesian Journal of Biotechnology, 26(1), 33-40.
Suliasih & Widawati, S. (2019). Optimization of phytase production by Enterobacter cloacae isolated from legume rhizosphere. Biotropia Issue, May 2019, 1–15.
Sumengen, M., Dincer, S., & Kaya, A. (2013). Production and characterization of phytase from Lactobacillus plantarum. Food Biotechnology, 27(2), 105–118. https://doi.org/10.1080/08905436.2013.781507
Sümengen, M., Dinçer, S., & Kaya, A. (2012). Phytase production from Lactobacillus brevis. Turkish Journal of Biology, 36(5), 533–541. https://doi.org/10.3906/biy-1111-2
Suryani, A. E., Anggraeni, A. S., Istiqomah, L., Damayanti, E., & Karimy, M. F. (2021). Isolation and identification of phytate-degrading yeast from traditional fermented food. Biodiversitas, 22(2). https://doi.org/10.13057/biodiv/d220241
Thyagarajan, R., Namasivayam, S. K. R., & Narendrakumar, G. (2014). Evaluation of phytase production by Hypocrea lixii SURT01 in submerged and solid-state fermentation. International jJournal of Pharmacy and Pharmaceutical Sciences, 6(10), 352-355.
Vandenberghe, L. P., Pandey, A., Carvalho, J. C., Letti, L. A., Woiciechowski, A. L., Karp, S. G., Thomaz-Soccol, V., Martinez-Burgos, W., Penha, R.O., Herrman, L., Rodrigues, A.O., & Soccol, C. R. (2021). Solid-state fermentation technology and innovation for the production of agricultural and animal feed bioproducts. Systems Microbiology and Biomanufacturing, 1(2), 142-165.
Vohra, A., & Satyanarayana, T. (2001). Phytase production by the yeast, Pichia anomala. Biotechnology Letters, 23(7), 551–554. https://doi.org/10.1023/A:1010314114053
Wallenstein, M. D., Resource, N., & State, C. (2003). Chapter 2 Ecology of extracellular enzyme activities and organic matter degradation in soil: a complex community- driven process. Methods of Soil Enzymology.DOI: https://doi.org/10.22146/agritech.74761
Article Metrics
Abstract views : 867 | views : 694Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Ade Erma Suryani, Lusty Istiqomah Istiqomah, Ayu Septi Anggraeni, Anjar Windarsih Windarsih
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
agriTECH has been Indexed by:
agriTECH (print ISSN 0216-0455; online ISSN 2527-3825) is published by Faculty of Agricultural Technology, Universitas Gadjah Mada in colaboration with Indonesian Association of Food Technologies.