Study of Beef Availability Potential in Yogyakarta Special Province (DIY) through Multi Criteria Analysis (MCA) Model by Spatial Geographic Information System

https://doi.org/10.22146/agritech.28888

Dwi Aulia Puspitaningrum(1*), Masyhuri Masyhuri(2), Slamet Hartono(3), Jamhari Jamhari(4)

(1) Program Pasca Sarjana Pertanian. Minat Ekonomi Pertanian, Fakultas Pertanian, Universitas Gadjah Mada, Jl. Flora, Bulaksumur, Yogyakarta 55281
(2) Departemen Sosial Ekonomi Pertanian dan Agribisnis, Fakultas Pertanian, Universitas Gadjah Mada, Jl. Flora, Bulaksumur, Yogyakarta 55281
(3) Departemen Sosial Ekonomi Pertanian dan Agribisnis, Fakultas Pertanian, Universitas Gadjah Mada, Jl. Flora, Bulaksumur, Yogyakarta 55281
(4) Departemen Sosial Ekonomi Pertanian dan Agribisnis, Fakultas Pertanian, Universitas Gadjah Mada, Jl. Flora, Bulaksumur, Yogyakarta 55281
(*) Corresponding Author

Abstract


The increasing human population and income per capita in Indonesia have many impacts to the demand of food, not only staple food but also the secondary food too, including meat and beef demand. Based on data from Central Statistics Bureau of 1995–2016, beef demand in Indonesia has been increasing. This condition must be anticipated by preparing the supply, especially the availability of beef in Daerah Istimewa Yogyakarta province. In Yogyakarta city, one of the regencies of DIY, the demand rate grows by 3.2%/year, higher than the supply growth rate by 2.08 %/year.  This gap needs to be thought through the case of scarcity of beef on the market. This study aimed to identify the potential of supply in five parameters i.e.: beef population, the availability of semen for artificial insemination (IB), the availability of livestock feed plants (HMT), the number of cows that enter DIY, and the number of cows that exit from DIY. A model Spatial Geographic Information Systems (SGIS) has been used in this study. The study revealed the most potential area for the development of beef agribusiness, based on the availability side, was Gunung Kidul Regency, and the less potential was Yogyakarta municipality.

Keywords


Beef meat; GIS; multi criteria; potential; spatial

Full Text:

PDF


References

Akinci, H., Ozalp, A. Y., & Turgut, B. (2013). Agricultural land use suitability analysis using GIS and AHP Technique. Journal Computer and Electronic in Agriculture, 97(2013), 71–82. Doi: 10.1016/j.compag.2013.07.006.

Biro Pusat Statistik (BPS). (2008). Statistik Usaha Indonesia. http://www.bps.go.id. [20 Desember 2014].

Biro Pusat Statistik (BPS) DIY. (2015). Perkembangan Eksport Import DIY Bulan Januari 2015. Berita Resmi Statistik. No. 14/02/34/Th.XVII. 16 Februari 2015.

Biro Pusat Statistik (BPS) DIY. (2016). DIY dalam Angka Bulan Juli 2017. Laporan tahunan non publikasi, hal. 30–68.

Chakhar, S. & Mousseau, V. (2007). Spatial multicriteria decision making. LAMSADE: International Journal of Publications 1–8. Doi: 10.1007/978-0-387-35973-1.

Chomitz, K. M. & Gray, D. A. (2010). Roads, land use, and deforestation: a spatial model applied to belize. The World Bank Economic Review, 10(3), 487–512. Doi: 10.1093/wber/10.3.487.

Dodgson, J., Spackman, M., Pearman, A., & Phillips, L. (2009). Multi-Criteria Analysis: A Manual. London School of Economics and Political Science, Department of Economic History.

Irwansyah (2013). Sistem Informasi Geografis: Prinsip Dasar dan Pengembangan Aplikasi, Digibook Printing and Publising, Yogyakarta.

Juppenlatz & Tian (1996). Geografic information systemin application model. Suistanable Cities and Society Journal 14(1996): 12–25.

Kuncoro, M. (2002). Analisis Spasial dan Regional Studi Aglomerasi dan Kluster Industri Indonesia. Unit Penerbit dan Pencetak (UPP) AMP YKPN, Yogyakarta.

Kuncoro, M. (2006). Ekonomi Pembangunan Teori, Masalah, dan Kebijakan. Unit Penerbit dan Pencetak (UPP) STIM YKPN, Yogyakarta.

Neuwirth, C., Peck, A. & Simonovic, S. P. (2015). Modelling structural change in spatial system dynamics: a daisyword example. Journal of Environmental Modelling and Software, 65(2015), 30–40. Doi: 10.1016/j.envsoft.2014.11.026.

Niedertsscheider, M., Kuemmerie, T., Muller, D., & Erb, K. H. (2014). Exploring the effetct of drastic institutional and socio-economic changes on land system dynamics in Germany between 1883 and 2007. Global Environmental Change Journal, 28(2014), 98–108. Doi: 10.1016/j.gloenvcha.2014.06.006.

Tarigan, R. (20080. Perencanaan Pembangunan Wilayah. Edisi Revisi. Percetakan P.T. Bumi Aksara. Jakarta.

Zhang, X., Izaurralde, R. C, Manowitz, D. H., Sahajpal, R., & West, T. O. (2015). Regional scale cropland carbon budgets: evaluating a geospatial agrivultural modelling system using inventory data. Journal Environmental Modelling and Software, 63(2015), 199–216. Doi: 10.1016/j.envsoft.2014.10.005.



DOI: https://doi.org/10.22146/agritech.28888

Article Metrics

Abstract views : 2158 | views : 2241

Refbacks

  • There are currently no refbacks.




Copyright (c) 2018 Dwi Aulia Puspitaningrum, Masyhuri Masyhuri, Slamet Hartono, Jamhari Jamhari

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

agriTECH has been Indexed by:


agriTECH (print ISSN 0216-0455; online ISSN 2527-3825) is published by Faculty of Agricultural Technology, Universitas Gadjah Mada in colaboration with Indonesian Association of Food Technologies.


website statisticsView My Stats