Pengaruh Penambahan Laurat dan Glisin terhadap Nilai Warna dan Kadar Sitrinin Angkak
Susana Ristiarini(1), Muhammad Nur Cahyanto(2), Jaka Widada(3), Endang Sutriswati Rahayu(4*)
(1) Fakultas Teknologi Pertanian, Universitas Katolik Widya Mandala Surabaya, Jl. Dinoyo 42, Surabaya 62625
(2) Departemen Teknologi Pangan dan Hasil Pertanian, Fakultas Teknologi Pertanian, Universitas Gadjah Mada, Jl. Flora No. 1, Bulaksumur, Yogyakarta 55281
(3) Fakultas Pertanian, Universitas Gadjah Mada, Jl. Flora, Bulaksumur, Yogyakarta 55281
(4) Departemen Teknologi Pangan dan Hasil Pertanian, Fakultas Teknologi Pertanian, Universitas Gadjah Mada, Jl. Flora No. 1, Bulaksumur, Yogyakarta 55281
(*) Corresponding Author
Abstract
Angkak, commonly used for food colorant and flavor enhancers in oriental cuisine, is the result of fermentation by Monascus purpureus on steamed rice. In addition to producing pigments Monascus purpureus, Angkak also produces mycotoxins, citrinin, which is hepato-nephrotoxic. Biosynthesis of pigment and citrinin is following a polyketide synthase pathway and then subdivides to form pigment or citrinin. Fatty acids and amino acids are known to be the precursors of red pigment formers in their biosynthetic pathways. The purpose of this research was to know the effect of addition of lauric fatty acid and amino acid glycine on steamed rice substrate to the color characteristic and citrinin level by M. purpureus JK9A. The amount of fatty acid and glycine was respectively 0.5% and 1% (w/w). Fermentation was carried out for 14 days and every two days the solids content of fermented products, pH, number of cells, colors, pigments dissolved in water were measured. The level of citrinin was tested at the end of the fermentation period (14th day). There was no significant difference between treatments for the solids content of about 23 ̶ 29% and the number of cells 6.32 ̶ 6.56 logCFU/g. While the pH value, color and water-soluble pigments were significantly different between treatment and control. The ˚hue values of glycine and combination of lauric-glycine were 16.11 and 15.33, respectively, lower than controls (22.76). The highest A500nm/A400nm ratio was in the combination treatment of lauric-glycine and the lowest levels of citrinin also in the treatment of lauric-glycine combination. This study noticed that the addition of lauric or glycine and its combination in rice media for Monascus purpureus JK9A fermentation proved to increase the biosynthesis of red pigment (46.34%) and decrease citrinin level up to 49.97%.
Keywords
Full Text:
PDFReferences
Babitha, S., Soccol, C. R., & Pandey, A. (2007). Solid-state fermentation for the production of Monascus pigments from jackfruit seed. Bioresource Technology, 98(8): 1554–1560.
Baneshi, F., Azizi, M., Saberi, M., & Farsi, M. (2014). Evaluation of pH, carbon source and temperature effect on the pigments production by Monascus purpureus in a liquid culture using response surface methodology. Int.J.Curr.Microbiol.App.Sci, 3(10): 905–911.
Blanc, P. J., Laussac, J. P., Le Bars, J., Le Bars, P., Loret, M. O., Pareilleux, A., & Goma, G. (1995). Characterization of monascidin-A from Monascus as citrinin. Int. J. of Food Microbiology 27: 201–213.
Blanc, P. J., Loret, M. O., Santerre, A. L., Pareilleux, A., Prome, D., Prome, J. C., & Goma, G. (1994). Pigments of Monascus. Journal of Food Science (4): 5–8.
Chairote, E., Griangsak, C., Wongpornchai, S., & Lumyong, S. (2007). Preparation of red yeast rice using various Thai glutinous rice and Monascus purpureus CMU001 isolated from commercial Chinese red yeast. Kmitl Science and Technology Journal, 7: 28–37.
Chang, C. H., Yu, F. Y., Wu, T. S., Wang, L. T., dan Liu, B. H. (2011). Mycotoxin citrinin induced cell cycle G2/M arrest and numerical chromosomal aberration associated with disruption of microtubule formation in human cells. Toxicological Sciences, 119(1): 84–92.
Chen, G., Shi, K., Song, D., Quan, L., dan Wu, Z. (2015). The pigment characteristics and productivity shifting in high cell density culture of Monascus anka mycelia. BMC Biotechnology, 15(1): 1–9.
Cheng, M. J., Wu, M. Der, Yang, P. S., Chen, J. J., Chen, I. S., Chen, Y. L., dan Yuan, G. F. (2010). Secondary metabolites isolated from the fungus monascus kaoliang-fermented rice. Journal of the Chilean Chemical Society, 55(1): 107–110.
Chung, C. C., Chen, H. H., dan Hsieh, P. C. (2006). Application of the taguchi method to optimize, 30: 241–254.
Devi, P., D’Souza, L., Kamat, T., Rodrigues, C., dan Naik, C. G. (2009). Batch culture fermentation of Penicillium chrysogenum and a report on the isolation, purification, identification and antibiotic activity of citrinin. Indian Journal of Marine Sciences, 38(1): 38–44.
Dikshit, R., dan Tallapragada, P. (2011). Monascus purpureus: A potential source for natural pigment production. J. Microbiol. Biotech. Res, 1(4): 164–174.
Erdoğrul, Ö., dan Sebile Azirak. (2004). Review of the studies on the red yeast rice (Monascus purpureus). Turkish Electronic Journal of Biotechnology, 2: 37–49.
European Food Safety Authority (EFSA). (2012). Scientific Opinion on the risks for public and animal health related to the presence of citrinin in food and feed. The EFSA Journal, 10(3): 1–82.
Flajs, D., dan Peraica, M. (2009). Toxicological properties of citrinin. Arhiv Za Higijenu Rada i Toksikologiju, 60(4): 457–464.
Gordon, R. Y., Cooperman, T., Obermeyer, W., dan Becker, D. J. (2010). Marked variability of monacolin levels in commercial red yeast rice products: Buyer beware! Archives of Internal Medicine, 170(19): 1722–1727.
Hajjaj, H., François, J. M., Goma, G., dan Blanc, P. J. (2012). Effect of amino acids on red pigments and citrinin production in Monascus ruber. Journal of Food Science, 77(3): 156–159.
Hajjaj, H., Klaébé, A., Goma, G., Philippe, J., Barbier, E., dan François, J. (2000). Medium-chain fatty acids affect citrinin production in the filamentous fungus Monascus ruber Applied and Enviromental Microbiology, 66(3): 1120–1125.
Hajjaj, H., Klaébé, A., Loret, M. O., Goma, G., Blanc, P. J., dan François, J. (1999). Biosynthetic pathway of citrinin in the filamentous fungus Monascus ruber as revealed by 13C nuclear magnetic resonance. Applied and Environmental Microbiology, 65(1): 311–314.
Huang, T., Tan, H., Lu, F., Chen, G., dan Wu, Z. (2017). Changing oxidoreduction potential to improve water-soluble yellow pigment production with Monascus ruber CGMCC 10910. Microbial Cell Factories, 16(1): 1–12.
Lee, C. H., Lee, C. L., dan Pan, T. M. (2010). A 90-D Toxicity study of monascus-fermented products including high citrinin level. Journal of Food Science, 75(5): T91-T97
Lee, Y. S., Choi, B. K., Lee, H. J., Lee, D. R., Cheng, J., Lee, W. K., dan Suh, J. W. (2015). Monascus pilosus-fermented black soybean inhibits lipid accumulation in adipocytes and in high-fat diet-induced obese mice. Asian Pacific Journal of Tropical Medicine, 8(4): 276–282.
Omanor, I. B., Eziashi, E. I., dan Adekunle, A. A. (2008). Carbon nutrition in relation to growth of three Monascus species isolated from decaying date fruits. Journal of Microbiology, (2): 153–155.
Patakova, P. (2013). Monascus secondary metabolites: Production and biological activity. Journal of Industrial Microbiology and Biotechnology, 40(2): 169–181.
Pattanagul, P., Pinthong, R., dan Phianmongkhol, A. (2007). Review of angkak production (Monascus purpureus). Chiang Mai J. Sci., 34(3): 319–328.
Pattanagul, P., Pinthong, R., Phianmongkhol, A., dan Tharatha, S. (2008). Mevinolin, citrinin and pigments of adlay angkak fermented by Monascus sp. International Journal of Food Microbiology, 126(1–2): 20–23.
Rosenblitt, A., Agosin, E., Delgado, J., dan Pérez-Correa, R. (2000). Solid substrate fermentation of Monascus purpureus: Growth, carbon balance, and consistency analysis. Biotechnology Progress, 16(2): 152–162.
Samsudin, N. I. P., dan Abdullah, N. (2013). A preliminary survey on the occurrence of mycotoxigenic fungi and mycotoxins contaminating red rice at consumer level in Selangor, Malaysia. Mycotoxin Research, 29(2): 89–96.
Srianta, I., Hendrawan, B., Kusumawati, N., dan Blanc, P. J. (2012). Study on durian seed as a new substrate for Angkak production. International Food Research Journal, 19(3): 941–945.
Street, P., dan Ma, U. S. A. (2007). CitriTest TM HPLC Instruction Manual.
Teixeira, C. C. C., Teixeira, G. A., dan Freitas, L. A. P. (2013). Improving the production and CIELAB* color parameters of Monascus ruber pigments using a fractional factorial design. Asian Journal of Biomedical & Pharmaceutical Sciences, 2(15): 62–68.
Vidyalakshmi, R., Paranthaman, R., Murugesh, S., dan Singaravadivel, K. (2009). Stimulation of Monascus pigments by intervention of different nitrogen sources. Global Journal of Biotechnology & Biochemistry, 4(1): 25–28.
Wongjewboot, I., dan Kongruang, S. (2011). pH stability of ultrasonic Thai isolated Monascus purpureus pigments. International Journal of Bioscience, Biochemistry and Bioinformatics, 1(1): 79–83.
DOI: https://doi.org/10.22146/agritech.27042
Article Metrics
Abstract views : 3360 | views : 4294Refbacks
- There are currently no refbacks.
Copyright (c) 2019 Susana Ristiarini, Muhammad Nur Cahyanto, Jaka Widada, Endang Sutriswati Rahayu
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
agriTECH has been Indexed by:
agriTECH (print ISSN 0216-0455; online ISSN 2527-3825) is published by Faculty of Agricultural Technology, Universitas Gadjah Mada in colaboration with Indonesian Association of Food Technologies.