Potensi Lactobacillus plantarum yang Diisolasi dari Dadih dalam Meningkatkan Kadar Folat Susu Fermentasi

https://doi.org/10.22146/agritech.10493

Siti Nur Purwandhani(1*), Tyas Utami(2), Ria Millati(3), Endang Sutriswati Rahayu(4)

(1) Program Studi Teknologi Pangan, Fakultas Teknologi Pertanian, Universitas Widya Mataram Yogyakarta, nDalem Mangkubumen KT III/237, Yogyakarta 55123
(2) Departemen Teknologi Pangan dan Hasil Pertanian, Fakultas Teknologi Pertanian, Universitas Gadjah Mada, Jl. Flora No. 1, Bulaksumur, Yogyakarta 55281
(3) Departemen Teknologi Pangan dan Hasil Pertanian, Fakultas Teknologi Pertanian, Universitas Gadjah Mada, Jl. Flora No. 1, Bulaksumur, Yogyakarta 55281
(4) Departemen Teknologi Pangan dan Hasil Pertanian, Fakultas Teknologi Pertanian, Universitas Gadjah Mada, Jl. Flora No. 1, Bulaksumur, Yogyakarta 55281
(*) Corresponding Author

Abstract


Folate is a B vitamin that participates in one-carbon transfer reactions of metabolism process, particularly purine and pyrimidine biosynthesis (DNA and RNA). Some strains of lactic acid bacteria are known to produce folic acid through the conversion of guanosine tri phosphate and the presence of precursor p-amino benzoic acid and glutamic acid. In this study, skim milk was fermented using Lactobacillus plantarum Dad-13, G-3, and H-1 to increase the levels of folate. Fermentation was conducted at 37 °C for 18 hours. The aims of this study were to investigate the population of  L. plantarum during fermentation period, the change in pH and the levels of folate in fermented milk. The results showed that during the fermentation period using L. plantarum G-3, H-1, and Dad-13 cell count increased from 107 to 108 for G-3 and H-1, while Dad-13 into 109. The pH value decreased and the levels of folic acid in early fermentation increased rapidly but after approaching the end of fermentation, it began to stagnate. The folate level of skim milk was 23.70 ± 3.25 µg/L. Increased levels of folate in fermented milk after 18 hours fermentation using L. plantarum Dad-13, G-3, and H-1 were 32.04 ± 1.85 µg/L (135.19%), 28.21 ± 0.28 µg/L (118.99%), and 25.13 ± 1.27 µg/L (106.03%), respectively.

ABSTRAK

Folat merupakan vitamin B yang berpartisipasi dalam reaksi transfer satu-karbon dalam proses metabolisme, terutama biosintesis purin dan pirimidin (DNA dan RNA). Beberapa strain bakteri asam laktat diketahui mampu memproduksi asam folat melalui konversi guanosin tri pospat dan dengan adanya prekursor p-amino benzoat serta asam glutamat. Pada penelitian ini, susu skim difermentasi menggunakan Lactobacillus plantarum Dad-13, G-3, dan H-1 untuk meningkatkan kadar asam folatnya. Fermentasi dilakukan pada 37 °C selama 18 jam. Tujuan penelitian ini adalah untuk mengetahui pola pertumbuhan sel, perubahan pH, dan kadar asam folat susu selama fermentasi. Hasil penelitian menunjukkan bahwa selama fermentasi menggunakan L. plantarum Dad-13, G-3, dan H-1 jumlah sel meningkat dari 107 menjadi 108 untuk G-3 dan H-1, sedangkan Dad-13 menjadi 109. Nilai pH mengalami penurunan dan kadar asam folat pada awal fermentasi meningkat dengan cepat tapi setelah mendekati akhir fermentasi mulai stagnan. Kadar asam folat susu skim adalah 23,70 ± 3,25 µg/L. Dibandingkan dengan kadar asam folat susu skim, peningkatan kadar folat susu fermentasi setelah 18 jam fermentasi dengan starter L. plantarum Dad-13, G-3, dan H-1 secara berturut-turut 32,04 ± 1,85 µg/L (135,19%), 28,21 ± 0,28 µg/L (118,99%), dan 25,13 ± 1,27 µg/L (106,03%).


Keywords


Fermentation; folic acid; L. plantarum; skim milk

Full Text:

PDF


References

Arcot, J. dan Shrestha, A. (2005). Folate: methods of analysis. Trends in Food Science and Technology 16: 253–266.

Baines, M., Kredan, M.B., Usher, J., Davison, A., Higgins, G., Taylor, W., West, C., Fraser, W.D. dan Ranganath, L.R. (2007). The association of homocysteine and its determinants MTHFR genotype, folate, vitamin B12 and vitamin B6 with bone mineral density in postmenopausal British women. Bone 40: 730–736.

Burgess, C.M., Smid, E.J. dan van Sinderen, D. (2009). Bacterial vitamin B2, B11 and B12 overproduction: an overview. International Journal of Food Microbiology 133: 1–7.

Crittenden R.G., Martinez, N.R. dan Playne, M.J. (2003). Synthesis dan utilisation of folate by yoghurt starter cultures dan probiotic bacteria. International Journal of Food Microbiology 80: 217– 222.

Daly, L.E., Kirke, P.N.,  Molloy, A., Weir, D.G. dan Scott, J.M. (1995). Folate levels and neural tube defects. Journal of the American Medical Association 247: 1698–1702.

Djafaar, T.F., Cahyanto, M.N., Santoso, U. dan Rahayu, E.S. (2013). Growth of indigenous lactic acid bacteria Lactobacillus platarum-pentosus T4 and L. plantarum-pentosus T35 in kerandang (Canavalia virosa) milk and changes of raffinose. Malaysian Journal of Microbiology 9(3): 213–218.

Durga, J., Verhoef, P., Anteunis, L.J.C., Schouten, E. dan Kok, F.J. (2007). Effects of folic acid supplementation on hearing in older adults. Annals of Internal Medicine 146: 1–9.

Forsse´n, K.M.,  Ja¨gerstad,  M.I.,  Wigertz,  K. dan Wittho¨ft, C.M. (2000). Folates and dairy products: A critical update. Journal of the American College of Nutrition 19(2): 100S–110S.

Gangadharan, D. dan Nampoothiri, K.M. (2011).  Folate production using Lactococcus lactis ssp cremoris with implications for fortification of skim milk and fruit juices. LWT - Food Science dan Technology 44: 1859–1864.

Horne, D.W. dan Patterson, D. (1988). Lactobacillus casei microbiological assay of folic acid derivatives in 96-well microtiter plates. Clinical Chemistry 34: 2357–2359.

Hugenschmidt, S., Schwenninger, S.M., Gnehm, N. dan Lacroix, C. (2010). Sreening of natural biodiversity of lactic and propionic acid bacteria for folate and vitamin B12 production in supplemented whey permeate. International Dairy Journal 20: 852–857.
Iyer, R. dan Tomar, S.K. (2009). Folate: A functional food constituent. Journal of Food Science. 74: R114–R122.

Kennedy, D.A.,  Stern, S.J., Matok, I., Moretti, M.E., Sarkar, M., Adams-Webber, T. dan Koren, G. (2011). Folate intake, MTHFR polymorphisms, and the risk of  colorectal cancer: a systematic review and meta-analysis. Cancer Epidemiology 35: 2–10.

Lamers Y., Prinz-Langenohl, R., Bra¨mswig, S. dan Pietrzik, K. (2006). Red blood cell folate concentrations increase more after supplementation with [6S]-5- methyltetrahydrofolate than with folic acid in women of childbearing age. American Journal of Clinical Nutrition 84: 156–61.

LeBlanc, J.G., Lain˜o, J.E.,  del Valle, M. J., Vannini, V., van Sinderen, D., Taranto, M.P.,  de Valdez, G. F., de Giori, G. S. dan Sesma, F. (2011). B-Group vitamin production by lactic acid bacteria – current knowledge and potential applications. Journal of Applied Microbiology 111: 1297–1309.
Lin, M.Y. dan Young, C.M. (2000). Folate level in culture of lactic acid bacteria. International Dairy Journal 10: 409–413.

Luchsinger, J.A., Tang, M.X., Miller, J., Green, R. dan Mayeux, A.R. (2007). Relation of higher folate intake to lower risk of alzheimer disease in the elderly. American Medical Association 64: 86–92.

Madigan,  M.T.,  Martinko, J.M., dan Parker, J. (1984). Biology of Microorganism. Prentice Hall, International, Inc. London.

Pereira, A.H., Costa, G.A.N., Miglioranza, L., Furlaneto-Maia, L. dan Flavia, O.A. (2013). Microbiological, physical, chemical and sensory characteristics of milk fermented with Lactobacillus plantarum. Acta Scientiarum. Health Sciences. Maringa 35(1): 125–131.

Purwandhani, S.N. (2016). Biosintesa folat oleh bakteri asam laktat. Agrotech 1(1): 11–18.

Purwandhani, S.N., Millati, R., Utami, T. dan Rahayu, E.S. (2017). Isolation, characterization and screening of folat-producing bacteria from  traditional fermented food (dadih). International Food Research Journal (Accepted, 25 Januari 2017).

Rahayu, E.S., Yogeswara, A., Mariyatun, Windiarti, L., Utami, T. dan Watanabe, K. (2015). Molecular characteristics of indigenous probiotic strains from Indonesia. International Journal of Probiotic dan Prebiotic 10(4): 109–116. 

Rossi, M., Amaretti, A. dan Raimondi, S. (2011). Folate production by probiotic bacteria.  Nutrients 3: 118–134.

Sanna, M.G.,  Mangia, N.P., Garau, G.,  Murgia, M.A., Massa, T., Franco, A. dan Deiana, P. (2005). Selection of folate-producing lactic acid bacteria for improving fermented goat milk. Italia Journal Food Science 2(17): 143–154.

Suhartatik, N., Cahyanto, M.N. dan Rahayu, E.S. (2014). Isolation and identification of lactic acid bacteria producing β-glukosidase from Indonesian fermented food. International Food Research Journal 21(3): 973–978.

Sybesma, W., Starrenburg, M., Tijsseling, L., Hoefnagel, M.H.N. dan Hugenholtz, J. (2003). Effects of cultivation conditions on folate production by lactic acid bacteria. Applied and Environmental Microbiology 69(8): 4542–4548.

Utami, T., Cahyanto, M.N., Juffrie, M. dan Rahayu, E.S. (2015). Recovery of Lactobacillus casei strain Shirota (LCS) from the intestine of healthy Indonesian volunteers after intake of fermented milk dan its impact on the Enterobacteriaceae faecal microbiota. International Journal of Probiotics dan Prebiotics 10(2/3): 77–84.

Wegkamp, A., Oorschot, W.V., De Vos, W.M. dan Smid, E.J. (2007). Characterization of the role of para-aminobenzoic acid biosynthesis in folate production by Lactococcus lactis. Applied and Environmental Microbiology 73(8): 2673–2681.

Wouters, J.T.M., Ayad, E.H.E., Hugenholtz, J. dan Smit, G. (2002). Microbes from raw milk for fermented dairy products. International Dairy Journal 12(2-3): 91–109.



DOI: https://doi.org/10.22146/agritech.10493

Article Metrics

Abstract views : 1385 | views : 1374

Refbacks

  • There are currently no refbacks.




Copyright (c) 2018 Jurnal Agritech

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

agriTECH has been Indexed by:


agriTECH (print ISSN 0216-0455; online ISSN 2527-3825) is published by Faculty of Agricultural Technology, Universitas Gadjah Mada in colaboration with Indonesian Association of Food Technologies.


website statisticsView My Stats