Exploration of Polysaccharides and Oligosaccharides from Jali (Coix Lacryma-jobi) and Its Potential as Prebiotic

https://doi.org/10.22146/agritech.89351

Devi Arianty(1*), Aji Sutrisno(2), Agustin Krisna Wardani(3)

(1) Fisheries Resource Utilization, Faculty of Fisheries, Muhammadiyah University Kupang, Jl. K.H. Ahmad Dahlan, Oebobo, Kupang, 85228
(2) Department of Agricultural Product Technology, Faculty of Agricultural Technology, University of Brawijaya, Jl. Veteran, Ketawanggede, Malang, 65145
(3) Department of Agricultural Product Technology, Faculty of Agricultural Technology, University of Brawijaya, Jl. Veteran, Ketawanggede, Malang, 65145
(*) Corresponding Author

Abstract


Jali (Coix lacryma-jobi) is a cereal plant widely used as a functional food because it contains carbohydrate compounds, such as polysaccharides and oligosaccharides with a positive impact on the digestive system. This study was divided into two stages, namely extraction Jali and prebiotic analysis. The extraction method used was hot water extraction and alkali extraction according to their solubility in solvents. The prebiotic activity of oligosaccharide and polysaccharide extracts from jali was evaluated using in-vitro analysis. Therefore, this study aimed to explore polysaccharides and oligosaccharides in jali and their potential to act as prebiotic. The results showed that the extraction process affected the types of oligosaccharides, namely Fructooligosaccharides (FOS), as well as polysaccharides, including α-glucan and arabinoxylan. In this study, FOS and α-glucan were obtained by heating at 80 °C for 60 minutes, while arabinoxylan was extracted by heating at 80 °C for 120 minutes. The results of crude extracts of FOS and arabinoxylan were tested for HPLC analysis, while α-glucan was explored using FTIR. The jali seeds exhibited a remarkable FOS content of 40.78%, while their arabinoxylan composition included 22.4% arabinose and 4.8% xylose. In addition, the FTIR analysis revealed the presence of (14) (16) -α-D-glucan bond in jali seeds. The results showed that the extraction from the polysaccharide group, namely α-Glucan and Arabinoxylan, as well as from the oligosaccharides (FOS) had potential as prebiotic for the growth of Bifidobacterium longum and Lactobacillus casei. However, the highest results were based on OD and SCFA from the FOS extract. The addition of FOS affected the growth of Bifidobacterium longum more significantly (OD 0,871) compared to Lactobacillus casei (OD 0,725). Bifidobacterium longum exhibited SCFA levels of 243,827 mmol/L, while Lactobacillus casei showed levels of 140,942 mmol/L.


Keywords


Arabinoxylan; Coix lachryma-jobi (jali); fructooligosaccharides (FOS); glucan; prebiotic

Full Text:

PDF


References

Andriani, M., Permana, I. dewa G. M., & Rai, W. I. W. (2019). Pengaruh Suhu dan Waktu Eksraksi Daun Belimbing Wuluh (Averrhoa bilimbi L.) Terhadap Aktivitas Antioksidan Dengan Metode Ultrasonic Extraction (UAE). Jurnal Ilmu Dan Teknologi Pangan, 8(3), 330–340.

Anna, S., Rahmawati, & Aqil, M. (2017). Karakteristik tepung jewawut (Foxtail Millet) Variaetas Lokal Majene dengan Perlakuan Perendaman. Jurnal Penelitian Pascapanen Pertanian, 14(1), 11–21. https://doi.org/10.21082/jpasca.v14n1.2017.11-21

Chandan, R. C. (2007). Manufacturing Yogurt and Fermented Milks. In Manufacturing Yogurt and Fermented Milks. https://doi.org/10.1002/9780470277812

Chen, C., Zhao, G., Chen, W., & Guo, B. (2015). Metabolism of fructooligosaccharides in Lactobacillus plantarum ST-III via differential gene transcription and alteration of cell membrane fluidity. Applied and Environmental Microbiology, 81(22), 7697–7707. https://doi.org/10.1128/AEM.02426-15

Djaja, N. (2022). The Effect of Adding Job’s Tears to Yogurt on Plasma Glycated Albumin, Weight, and Lipid Profile in Patients with Type 2 Diabetes Mellitus: A Randomized Controlled Trial. Journal of Nutrition and Metabolism, 2022. https://doi.org/10.1155/2022/1876731

Figueiredoa, F. C. de, Rankea, F. F. de B., & Oliva-Netob De, P. (2020). Evaluation of xylooligosaccharides and fructooligosaccharides on digestive enzymes hydrolysis and as a nutrient for different probiotics and Salmonella typhimurium. LWT - Food Science and Technology, 118. https://doi.org/https://doi.org/10.1016/j.lwt.2019.108761

Goranov, B., Blazheva, D., Kostov, G., Denkova, Z., & Germanova, Y. (2013). Lactic acid fermentation with encapsulated Lactobacillus casei SSP. rhamnosus ATCC 11979 (NBIMCC 1013) in alginate/ chitosan matrices. Bulgarian Journal of Agricultural Science, 19(SUPPL. 2), 101–104.

Gorreja, F., & Walker, W. A. (2022). The potential role of adherence factors in probiotic function in the gastrointestinal tract of adults and pediatrics: a narrative review of experimental and human studies. Gut Microbes, 14(1), 1–27. https://doi.org/10.1080/19490976.2022.2149214

Haghikia, A., Zimmermann, F., Schumann, P., Jasina, A., Roessler, J., Schmidt, D., Heinze, P., Kaisler, J., Nageswaran, V., Aigner, A., Ceglarek, U., Cineus, R., Hegazy, A. N., Van Der Vorst, E. P. C., Doring, Y., Strauch, C. M., Nemet, I., Tremaroli, V., Dwibedi, C., … Landmesser, U. (2022). Propionate attenuates atherosclerosis by immune-dependent regulation of intestinal cholesterol metabolism. European Heart Journal, 43(6), 518–533. https://doi.org/10.1093/eurheartj/ehab644

Hernández, M. A. G., Canfora, E. E., Jocken, J. W. E., & Blaak, E. E. (2019). The short-chain fatty acid acetate in body weight control and insulin sensitivity. Nutrients, 11(8). https://doi.org/10.3390/nu11081943

Hogarth, A. J. C. L., Hunter, D. E., A., W., Jacobs, K. A., Garleb, & Wolf, B. W. (2000). Ion Chromatographic Determination of Three Fructooligosaccharide Oligomers in Prepared and Preserved Foods. J. Agric. Food Chem, 48(11), 5326–5330. https://doi.org/https://doi.org/10.1021/jf000111h

Holmes, Z. C., Villa, M. M., Durand, H. K., Jiang, S., Dallow, E. P., Petrone, B. L., Silverman, J. D., Lin, P. H., & David, L. A. (2022). Microbiota responses to different prebiotics are conserved within individuals and associated with habitual fiber intake. Microbiome, 1–16. https://doi.org/10.1186/s40168-022-01307-x

Husna, A., Arianty, D., Sutrisno, A., & Wardani*, A. K. (2018). Potensi Jali (Coix Lachryma-Jobi L.) Sebagai Prebiotik Terhadap Pertumbuhan Bakteri Asam Laktat. Jurnal Teknologi Pertanian, 19(2), 75–84. https://doi.org/https://doi.org/10.21776/ub.jtp.2018.019.02.2

Kanani, N., Wardono, E. Y., Hafidz, A. M., & Octavani, H. R. (2018). Pengaruh Konsentrasi Pelarut Terhadap Proses Delignifikasi Dengan Metode Pre-Treatment Kimia. Teknika: Jurnal Sains Dan Teknologi, 14(1), 87. https://doi.org/10.36055/tjst.v14i1.5863

Kang, S., You, H. J., Lee, Y. G., Jeong, Y., Johnston, T. V., Baek, N. I., Ku, S., & Ji, G. E. (2020). Production, structural characterization, and in vitro assessment of the prebiotic potential of butyl-fructooligosaccharides. International Journal of Molecular Sciences, 21(2). https://doi.org/10.3390/ijms21020445

Kayal, V. V, & Many, J. N. (2014). Study on Estimation , Extraction and Analysis of Barley Beta-glucan. 3(10), 1480–1484.

Komeno, M., Yoshihara, Y., Kawasaki, J. et al. (2022). Two α-L-arabinofuranosidases from Bifidobacterium longum subsp. longum are involved in arabinoxylan utilization. Appl Microbiol Biotechnol, 106, 1957–1965. https://doi.org/https://doi.org/10.1007/s00253-022-11845-x

Laxmisha, K. M., Semwal, D. P., Gupta, V., Katral, A., Bisht, I. S., Mehta, P. S., Arya, M., Bhardwaj, R., & Bhatt, K. C. (2022). Nutritional profiling and GIS-based grid mapping of Job’s tears (Coix Lacryma-jobi L.L.) germplasm. Applied Food Research, 2(2), 100169. https://doi.org/10.1016/j.afres.2022.100169

Liu, P., Wang, Y., Yang, G., Zhang, Q., Meng, L., Xin, Y., & Jiang, X. (2021). The role of short-chain fatty acids in intestinal barrier function, inflammation, oxidative stress, and colonic carcinogenesis. Pharmacological Research, 165(September 2020), 105420. https://doi.org/10.1016/j.phrs.2021.105420

Louis, P., & Flint, H. J. (2017). Formation of propionate and butyrate by the human colonic microbiota. Environmental Microbiology, 19(1), 29–41. https://doi.org/10.1111/1462-2920.13589

Mahalak, K. K., Firrman, J., Narrowe, A. B., Hu, W., Jones, S. M., Bittinger, K., Moustafa, A. M., & Liu, L. S. (2023). Fructooligosaccharides (FOS) differentially modifies the in vitro gut microbiota in an age-dependent manner. Frontiers in Nutrition, 9(January). https://doi.org/10.3389/fnut.2022.1058910

Maheshwari, G. (2017). Extraction and Isolation of β -Glucan from Grain Sources — A Review. 00(00), 1–11. https://doi.org/10.1111/1750-3841.13765

Manosroi, J., & Khositsuntiwong, N. (2014). Biological activities of fructooligosaccharide ( FOS ) -containing Coix lachryma-jobi Linn . extract. 51(February), 341–346. https://doi.org/10.1007/s13197-011-0498-6

Margino, S., Ari, W., Kelautan, I., Perikanan, F., Diponegoro, U., & Utara, J. T. (2015). Pengaruh pH , Suhu Dan Salinitas Terhadap Pertumbuhan dan Produksi Asam Organik Bakteri Asam Laktat Yang Diisolasi Dari Intestinum Udang Penaeid. 20(4), 187–194. https://doi.org/10.14710/ik.ijms.20.4.187-194

Mendez-Encinas, M. A., Valencia-Rivera, D. E., Carvajal-Millan, E., Astiazaran-Garcia, H., Micard, V., & Rascón-Chu, A. (2021). Fermentation of Ferulated Arabinoxylan Recovered from the Maize Bioethanol Industry. 1–12.

Møller, M. S., Goh, Y. J., Viborg, A. H., Andersen, J. M., Klaenhammer, T. R., Svensson, B., & Abou Hachem, M. (2014). Recent insight in α-glucan metabolism in probiotic bacteria. Biologia (Poland), 69(6), 713–721. https://doi.org/10.2478/s11756-014-0367-7

Murphy, E. J., Rezoagli, E., Major, I., Rowan, N. J., & Laffey, J. G. (2020). Β-Glucan Metabolic and Immunomodulatory Properties and Potential for Clinical Application. Journal of Fungi, 6(4), 1–33. https://doi.org/10.3390/jof6040356

O’Callaghan, A., & van Sinderen, D. (2016). Bifidobacteria and their role as members of the human gut microbiota. Frontiers in Microbiology, 7(JUN). https://doi.org/10.3389/fmicb.2016.00925

Olawuyi, I. F., Park, J. J., & Lee, W. Y. (2020). Effect of extraction conditions on ultrasonic-Assisted extraction of polyphenolic compounds from okra (Abelmoschus esculentus L.) leaves. Korean Journal of Food Preservation, 27(4), 476–486. https://doi.org/10.11002/KJFP.2020.27.4.476

Pandey, A., Koruri, S. S., Chowdhury, R., & Bhattacharya, P. (2016). Prebiotic influence of plantago ovata on free and microencapsulated l. Casei-growth kinetics, antimicrobial activity and microcapsules stability. International Journal of Pharmacy and Pharmaceutical Sciences, 8(8), 89–97.

Parhi, P., Song, K. P., & Choo, W. S. (2022). Growth and survival of Bifidobacterium breve and Bifidobacterium longum in various sugar systems with fructooligosaccharide supplementation. Journal of Food Science and Technology, 59(10), 3775–3786. https://doi.org/10.1007/s13197-022-05361-z

Puminat, W. and Teangpook, C. (2013). Extraction and Powder Product of Fructooligosaccharide from Jerusalem Artichoke. Journal of Food Science and Engineering, 3(3), 141.

Rasbawati, Irmayani, Novieta, I. D., & Nurmiati. (2019). Karakteristik Organoleptik dan Nilai pH Yoghurt dengan Penambahan Sari Buah Mengkudu ( Morinda citrifolia L ). Jurnal Ilmu Produksi Dan Teknologi Hasil Peternakan, 07(1), 41–46.

Renye, J. A., White, A. K., & Hotchkiss, A. T. (2021). Identification of Lactobacillus Strains Capable of Fermenting.

Rozali, Z. F. (2018). Mini review: Peran fisiologis pati resisten sebagai substrat bakteri kolon dalam produksi asam lemak rantai pendek. Jurnal Bioleuser, 2(1), 20–23.

Rusdi, B., Yuliawati, K. M., & Khairinisa, M. A. (2021). Comparison on the prebiotic polysaccharides and oligosaccharides from plant studies in Indonesia and outside of Indonesia. Journal of Engineering Science and Technology, 16(3), 2260–2272.

Sternemalm, E., Höije, A., & Gatenholm, P. (2008). Effect of arabinose substitution on the material properties of arabinoxylan films. Carbohydrate Research, 343(4), 753–757. https://doi.org/10.1016/j.carres.2007.11.027

Synytsya, A., & Novak, M. (2014). Structural analysis of glucans. Annals of Translational Medicine, 2(2), 1–14. https://doi.org/10.3978/j.issn.2305-5839.2014.02.07

Tang, H., Huang, W., & Yao, Y. F. (2023). The metabolites of lactic acid bacteria: classification, biosynthesis and modulation of gut microbiota. Microbial Cell, 10(3), 49–62. https://doi.org/10.15698/mic2023.03.792

Venkatachalam, G., Arumugam, S., & Doble, M. (2021). Industrial production and applications of α/β linear and branched glucans. Indian Chemical Engineer, 63(5), 533–547. https://doi.org/10.1080/00194506.2020.1798820

Viet Bui, C., Siriwatwechakul, W., Tiyabhorn, W., Wattanasiritham, T., Limpraditthanont, N., & Boonyarattanakalin, S. (2016). Conversion of Jerusalem Artichoke Tuber Powder into Fructooligosaccharides, Fructose, and Glucose by a Combination of Microwave Heating and HCl as a Catalyst. Thammasat International Journal of Science and Technology, 21(3). https://doi.org/10.14456/tijsat.2016.20

Watson, D., O’Connell Motherway, M., Schoterman, M. H. C., van Neerven, R. J. J., Nauta, A., & Van Sinderen, D. (2013). Selective carbohydrate utilization by lactobacilli and bifidobacteria. Journal of Applied Microbiology, 114(4), 1132–1146. https://doi.org/10.1111/jam.12105

Yao, D., Wu, M., Dong, Y., Ma, L., Wang, X., Xu, L., Yu, Q., & Zheng, X. (2022). In vitro fermentation of fructooligosaccharide and galactooligosaccharide and their effects on gut microbiota and SCFAs in infants. Journal of Functional Foods, 99(105329). https://doi.org/https://doi.org/10.1016/j.jff.2022.105329

Zannini, E., Núñez, Á. B., Sahin, A. W., & Arendt, E. K. (2022). Arabinoxylans as Functional Food Ingredients: A Review. Foods, 11(7), 1–28. https://doi.org/10.3390/foods11071026

Zhang, A., Deng, J., Liu, X., He, P., He, L., Zhang, F., Linhardt, R. J., & Sun, P. (2018). Structure and conformation of α-glucan extracted from Agaricus blazei Murill by high-speed shearing homogenization. International Journal of Biological Macromolecules, 113, 558–564. https://doi.org/10.1016/j.ijbiomac.2018.02.151

Zhang, Q., Zhao, W., Zhao, Y., Duan, S., Liu, W., & Zhang, C. (2022). In vitro Study of Bifidobacterium lactis BL-99 With Fructooligosaccharide Synbiotics Effected on the Intestinal Microbiota. 9(April). https://doi.org/10.3389/fnut.2022.890316

Zhang, Z., Smith, C., & Li, W. (2014). Extraction and modification technology of arabinoxylans from cereal by-products: A critical review. Food Research International, 65(PC), 423–436. https://doi.org/10.1016/j.foodres.2014.05.068

Zhao, J., & Cheung, P. C. K. (2011). Fermentation of β-glucans derived from different sources by bifidobacteria: Evaluation of their bifidogenic effect. Journal of Agricultural and Food Chemistry, 59(11), 5986–5992. https://doi.org/10.1021/jf200621y

Zhou, S., Liu, X., Guo, Y., Wang, Q., Peng, D., & Cao, L. (2010). Comparison of the immunological activities of arabinoxylans from wheat bran with alkali and xylanase-aided extraction. Carbohydrate Polymers, 81(4), 784–789. https://doi.org/10.1016/j.carbpol.2010.03.040



DOI: https://doi.org/10.22146/agritech.89351

Article Metrics

Abstract views : 1107 | views : 717

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Devi Arianty, Aji Sutrisno, Agustin Krisna Wardani

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

agriTECH has been Indexed by:


agriTECH (print ISSN 0216-0455; online ISSN 2527-3825) is published by Faculty of Agricultural Technology, Universitas Gadjah Mada in colaboration with Indonesian Association of Food Technologies.


website statisticsView My Stats