MaxEnt-Simulated Site Suitability Model for Adlai (Coix lacryma-jobi. L.) in Bukidnon, Philippines

https://doi.org/10.22146/agritech.57482

Joseph Paquit(1), Jason Parlucha(2*), Garry Marapao(3)

(1) Department of Forest Biological Science, Central Mindanao University, Bukidnon 8710 & Center for Geomatics Research & Development in Mindanao
(2) Department of Wood Science and Technology, Central Mindanao University, Bukidnon 8710
(3) Department of Forest Sciences, College of Agriculture, Forestry and Environmental Sciences, Mindanao State University Naawan Campus, Misamis Oriental 9023
(*) Corresponding Author

Abstract


To create a baseline and projected site suitability models for Adlai and assess the effects of climate change on the distribution of the species, 52 species occurrence points (SOPs) and 14 bioclimatic variables were used. Subsequently, purposive sampling was adopted to collect SOPs, while bioclimatic variables were obtained from a credible online source. The results showed that 245,980 hectares in the province are suitable for species based on the model. To determine the impact of climate change, the projected suitability modeled over 30 years was used, showing an increase from 245,980 hectares to 391,872, an increase of 145,892 hectares. Most of the projected suitable areas are in the southern part where some towns have almost 100% suitability coverage. The prediction accuracy of the model was excellent at 92% based on the Receiver Operating Characteristic-Area Under Curve (ROC-AUC). The bioclimatic variable with the most important contribution is AP12 (annual precipitation) which obtained 24.74%. The information generated in this research is essential for interested sectors in planning, targeting, and prioritizing strategic areas for Adlai investment programs.


Keywords


Adlai; climate change; climate suitability; Maxent

Full Text:

PDF


References

Akıncı, H., Özalp, A. Y., & Turgut, B. (2013). Agricultural land use suitability analysis using GIS and AHP techniques. Computers and electronics in agriculture, 97.https://doi.org/10.1016/j.compag.2013.07.006

Aradilla, A.R. (2016). Phased Planting: Determining the Best Time to Plant Adlay (Coix lacryma-jobi L.) in Southern Bukidnon, Mindanao, Philippines. International Journal of Education and Research 4.

Bennie, J., Huntley, B., Wiltshire, A., Hill, M. O., & Baxter, R. (2008). Slope, aspect, and climate: Spatially explicit and implicit models of topographic microclimate in chalk grassland. Ecological Modelling, 216. https://doi.org/10.1016/j.ecolmodel.2009.11.022

Calalang, G., & Colinet, G. (2014). A review of soils and crops in the Bukidnon Highlands of Northern Mindanao, the Philippines. Biotechnologie, Agronomie, Société et Environnement, 18.

Daron, J., Macadam, I., Kanamaru, H., Cinco, T., Katzfey, J., Scannell, C., Jones, R., Villafuerte, M., Cruz, F., Narisma, G., Delfino, R.J., Lasco, R., Manalo, J., Ares, E., Solis, A.L., de Guzman, R., Basconcillo, J. & Tangang, F. (2018). Providing future climate projections using multiple models and methods: insights from the Philippines. Climatic Change, 148. https://doi.org/10.1007/s10584-018-2183-5

Elith, J., Graham, C. H., Anderson, R. P., Dudík, M., Ferrier, S., Guisan, A., Hijmans, R. J, Huettmann, F., Leathwick, J. R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B. A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton J. M., Townsend Peterson, A., Phillips, S.J., Richardson, K., Scachetti-Pereira, R., Soberon, J., Williams, S., Wisz, M. S., & E. Zimmermann, N. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29. https://doi.org/10.1111/j.2006.0906-7590.04596.x

Franklin, J., & Miller, J. A. (2009). Mapping species distributions: Spatial inference and prediction. Cambridge University Press. United kingdom.

Garcia, K., Lasco, R., Ines, A., Lyon, B., & Pulhin, F. (2013). Predicting geographic distribution and habitat suitability due to climate change of selected threatened forest tree species in the Philippines. Applied Geography, 44. https://doi.org/10.1016/j.apgeog.2013.07.005

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25. https://doi.org/10.1002/joc.1276

Hulshof, C. M., & Spasojevic, M. J. (2020). The edaphic control of plant diversity. Global Ecology and Biogeography, 29. https://doi.org/10.1111/geb.13151

Israel, D. C., & Briones, R. M. (2012). Impacts of natural disasters on agriculture, food security, and natural resources and environment in the Philippines. PIDS discussion paper series, 1-36.

Intergovernmental Panel on Climate Change (IPCC). (2007). Summary for Policymakers. In Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (Eds), In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

Kamyo, T., & Asanok, L. (2020). Modeling habitat suitability of Dipterocarpus alatus (Dipterocarpaceae) using maxent along the chao phraya river in central Thailand. Forest Science and Technology, 16. https://doi.org/10.1080/21580103.2019.1687108

Khalil, T., Asad, S. A., Khubaib, N., Baig, A., Atif, S., Umar, M., Kropp, J.P., Pradhan, P. & Baig, S. (2021). Climate change and potential distribution of potato (Solanum tuberosum) crop cultivation in Pakistan using Maxent. AIMS Agriculture and Food, 6.

Marin, R. A., Medina, M. A. P., & Paquit, J. C. (2020). Environmental services of Adlay (Coix lacryma-jobi L): a potential agroforestry crop in the uplands. Earth and Environmental Science 449.

Paquit, J. C., Pampolina, N. M., Tiburan, C. L. J., & Manalo, M. M. Q. (2017). Maxent modeling of the habitat distribution of the critically endangered Pterocarpus indicus Willd. forma indicus Inmindanao, Philippines. Journal of Biodiversity and Environmental Sciences (JBES), 10.

Paquit, J. C., & Rama, R. I. P. (2018). Modeling the effect of climate change to the potential invasion range of Piper aduncum Linnaeus. Global Journal of Environmental Science and Management, 4. https://doi.org/10.22034/GJESM.2018.04.01.007

Paquit, J. C., Toledo-bruno, A. G., Rivera, T. A. S., & Salingay, R. O. (2018). Climate-risk vulnerability assessment of the agriculture sector in the municipalities and cities of Bukidnon, Philippines. International Journal of Biosciences (IJB), 13. http://dx.doi.org/10.12692/ijb/13.6.155-168

Paquit, J. & Rojo, M. J. (2018). Assessing suitable sites for Falcata (Paraserianthes falcataria Nielsen) plantation in Bukidnon, Philippines using GIS. International Journal of Biosciences, 12.

Parlucha, J. (2017). Species-site matching based on growth performance evaluation of mixed native and exotic secondary forest in Musuan Bukidnon. Journal of Biodiversity and Environmental Sciences (JBES), 10.

Pearson, R. G. (2007). Species’ Distribution Modeling for Conservation Educators and Practitioners. Network of Conservation Educators and Practitioners, Center for Biodiversity and Conservation, American Museum of Natural History, 3.

Peterson, A. T., & Nakazawa, Y. (2008). Environmental data sets matter in ecological niche modelling: An example with Solenopsis invicta and Solenopsis richteri. Global Ecology and Biogeography, 17. https://doi.org/10.1111/j.1466-8238.2007.00347.x

Phillips, S. B., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. International Journal of Global Environmental Issues, 190. https://doi.org/10.1016/j.ecolmodel.2005.03.026

Rebelo, H., & Jones, G. (2010). Ground validation of presence-only modelling with rare species: A case study on barbastelles Barbastella barbastellus (Chiroptera: Vespertilionidae). Journal of Applied Ecology, 47. https://doi.org/10.1111/j.1365-2664.2009.01765.x

Xu, X., Zhang, H., Xie, T., Xu, Y., Zhao, L., & Tian, W. (2017). Effects of climate change on the potentially suitable climatic geographical range of Liriodendron chinense. Forests, 8. https://doi.org/10.3390/f8100399



DOI: https://doi.org/10.22146/agritech.57482

Article Metrics

Abstract views : 509 | views : 260

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Joseph C Paquit, Jason A Parlucha, Garry C Marapao

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

agriTECH has been Indexed by:


agriTECH (print ISSN 0216-0455; online ISSN 2527-3825) is published by Faculty of Agricultural Technology, Universitas Gadjah Mada in colaboration with Indonesian Association of Food Technologies.


website statisticsView My Stats