Dampak Penerapan Fasilitasi Sarana Pascapanen terhadap Kualitas Jagung (Zea mays L.) di Indonesia

https://doi.org/10.22146/agritech.56530

Deasy Fitriati(1*), Vera Ramashinta(2), Hastari Kusumawardhani(3)

(1) Direktorat Pengolahan dan Pemasaran Hasil Tanaman Pangan, Direktorat Jenderal Tanaman Pangan, Kementerian Pertanian, Jl. Raya Ragunan No. 15, Pasar Minggu, Jakarta Selatan 17550
(2) Direktorat Pengolahan dan Pemasaran Hasil Tanaman Pangan, Direktorat Jenderal Tanaman Pangan, Kementerian Pertanian, Jl. Raya Ragunan No. 15, Pasar Minggu, Jakarta Selatan 17550
(3) Direktorat Pengolahan dan Pemasaran Hasil Tanaman Pangan, Direktorat Jenderal Tanaman Pangan, Kementerian Pertanian, Jl. Raya Ragunan No. 15, Pasar Minggu, Jakarta Selatan 17550
(*) Corresponding Author

Abstract


Penelitian yang bertujuan untuk mengevaluasi kualitas jagung setelah penerapan fasilitasi sarana pascapanen dari pemerintah.  Kegiatan ini dilaksanakan di sentra produksi jagung di Indonesia pada tahun 2017-2019. Pengumpulan data dilakukan dengan metode survei dan sampel dipilih berdasarkan metode stratified random sampling. Hasil penelitian menunjukkan bahwa mutu jagung di Indonesia berfluktuatif. Kandungan aflatoksin pada sampel 0,05 μg/kg sampai 976,25 μg/kg dan kandungan biji pecah serta rusak 0 sampai 34,40%. Kontaminasi aflatoksin yang berada di atas 150 μg/kg (batas maksimum pada SNI) sebanyak 5% dari total sampel. Di beberapa provinsi, kandungan aflatoksin, kadar air, biji rusak dan biji pecah tidak masuk dalam persyaratan mutu jagung yang terdapat pada SNI.  Peningkatan mutu jagung belum menjadi prioritas bagi petani dan pedagang. Karena belum adanya insentif terhadap proses pascapanen yang menjaga mutu hasil produksi. Fasilitasi sarana yang berupa mesin pascapanen diberikan pemerintah kepada petani masih sebatas untuk mengurangi losses. Namun, kualitatif losses belum sesuai dengan target yang diinginkan. Hasil penelitian ini dapat digunakan oleh pembuat kebijakan untuk keberhasilan pelaksanaan program di masa yang akan datang.

Keywords


Aflaktoksin; sarana pascapanen; kualitas jagung

Full Text:

PDF


References

Abass, A. B., Ndunguru, G., Mamiro, P., Alenkhe, B., Mlingi, N., & Bekunda, M. (2014). Post-harvest food losses in a maize-based farming system of semi-arid savannah area of Tanzania. Journal of Stored Products Research, 57, 49–57. https://doi.org/10.1016/j.jspr.2013.12.004

Abrunhosa, L., Paterson, R. R. M., Kozakiewicz, Z., Lima, N., & Venâncio, A. (2001). Mycotoxin production from fungi isolated from grapes. Letters in Applied Microbiology, 32(4), 240–242. https://doi.org/10.1046/j.1472-765X.2001.00897.x

Bakoye, O. N., Baoua, I. B., Seyni, H., Amadou, L., Murdock, L. L., & Baributsa, D. (2017). Quality of maize for sale in markets in Benin and Niger. Journal of Stored Products Research, 71, 99–105. https://doi.org/10.1016/j.jspr.2017.02.001

[BPS] Badan Pusat Statistik. (2019). Statistical Yearbook of Indonesia.

[BSN] Badan Standarisasi Nasional (ID). (2013). SNI 3920:2013, Jagung.

[BSN] Badan Standarisasi Nasional (ID). (2013). SNI 4483:2013, Jagung-Bahan Pakan Ternak.

Djuric, I., & Götz, L. (2016). Export restrictions – Do consumers really benefit? The wheat-to-bread supply chain in Serbia. Food Policy, 63, 112–123. https://doi.org/10.1016/j.foodpol.2016.07.002

Gu, Ri-liang., Huang, Ran., Jia, Guang-yao., Yuan, Zhi-peng., Ren, Li-sha, Li LI, & Wang, Jian-hua. (2019). Effect of mechanical threshing on damage and vigor of maize seed threshed at different moisture contents. Journal of Integrative Agriculture, 18(7), 1571–1578. https://doi.org/10.1016/S2095-3119(18)62026-X

Kamika, I., Ngbolua, K. te N., & Tekere, M. (2016). Occurrence of aflatoxin contamination in maize throughout the supply chain in the Democratic Republic of Congo. Food Control, 69(March 2018), 292–296. https://doi.org/10.1016/j.foodcont.2016.05.014

Kamika, I., Mngqawa, P., Rheeder, J. P., Teffo, S. L., & Katerere, D. R. (2014). Mycological and aflatoxin contamination of peanuts sold at markets in Kinshasa, Democratic Republic of Congo, and Pretoria, South Africa. Food Additives and Contaminants: Part B Surveillance, 7(2), 120–126. https://doi.org/10.1080/19393210.2013.858187

Krout-Greenberg, N. D., Puschner, B., Davidson, M. G., & DePeters, E. J. (2013). Preliminary study to assess mycotoxin concentrations in whole corn in the California feed supply. Journal of Dairy Science, 96(4), 2705–2712. https://doi.org/10.3168/jds.2012-5957

Maiyar, L. M., & Thakkar, J. J. (2017). A combined tactical and operational deterministic food grain transportation model: Particle swarm based optimization approach. In Computers and Industrial Engineering (Vol. 110). Elsevier Ltd. https://doi.org/10.1016/j.cie.2017.05.023

Milicevic, D., Nesic, K., & Jaksic, S. (2015). Mycotoxin Contamination of the Food Supply Chain - Implications for One Health Programme. Procedia Food Science, 5, 187–190. https://doi.org/10.1016/j.profoo.2015.09.053

Mitchell, D., Parra, R., Aldred, D., Magan, N., (2004). Water and temperature relations of growth and ochratoxin A production by Aspergillus carbonarius strains from grapes in Europe and Israel. J. Appl. Microbiol. 97, 439445.

Munkvold, G. P., Arias, S., Taschl, I., & Gruber-Dorninger, C. (2018). Mycotoxins in corn: Occurrence, impacts, and management. Corn: Chemistry and Technology, 3rd Edition (3rd ed.). Elsevier Inc. https://doi.org/10.1016/B978-0-12-811971-6.00009-7

Pandey, P., Bajrachrya, J., & Pokharel, S. (2013). Influence of corn (Zea mays L) seed processing with a locally produced sheller on seed quality and their damage. International Journal of Applied Sciences and Biotechnology, 1(2), 67–70. https://doi.org/10.3126/ijasbt.v1i2.8198

Panison, F., Sangoi, L., Kolling, D. F., Coelho, C. M. M., & Durli, M. M. (2016). Harvest Time and Agronomic Performance of Maize Hybrids with Contrasting Growth Cycles. Acta Scientiarum - Agronomy, 38(2), 219–226. https://doi.org/10.4025/actasciagron.v38i2.27901

Parfitt, J., Barthel, M., & MacNaughton, S. (2010). Food waste within food supply chains: Quantification and potential for change to 2050. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 3065–3081. https://doi.org/10.1098/rstb.2010.0126

Pleadin, J., Frece, J., & Markov, K. (2019). Mycotoxins in food and feed. Advances in Food and Nutrition Research (1st ed., Vol. 89). Elsevier Inc. https://doi.org/10.1016/bs.afnr.2019.02.007

Purwadaria, H.K. (1988). Buku Pegangan: Teknologi Penanganan Pascapanen Jagung. Edisi Kedua. Deptan, FAO, UNDP. Development and Utilization of Postharvest Tools and Equipment, INS/088/077.

Rugumamu, C. P., Muruke, M. H. S., Hosea, K. M., & Ismail, F. A. R. (2011). Advances in insect pest management technologies of agricultural crops: an integrated approach. 55–61.

Sims, B., & Kienzle, J. (2017). Sustainable agricultural mechanization for smallholders: What is it and how can we implement it? Agriculture (Switzerland), 7(6), 1–21. https://doi.org/10.3390/agriculture7060050

Safika. (2008). Korelasi Aspergillus flavus dengan konsentrasi aflatoxin B1 pada ikan kayu. J. Ked. Hewan, 2(September 2008), 170–175.

Stasiewicz, M. J., Falade, T. D. O., Mutuma, M., Mutiga, S. K., Harvey, J. J. W., Fox, G., Pearson, T. C., Muthomi, J. W., & Nelson, R. J. (2017). Multi-spectral kernel sorting to reduce aflatoxins and fumonisins in Kenyan maize. Food Control, 78, 203–214. https://doi.org/10.1016/j.foodcont.2017.02.038

Stewart, W. M., & Roberts, T. L. (2012). Food security and the role of fertilizer in supporting it. Procedia Engineering, 46, 76–82. https://doi.org/10.1016/j.proeng.2012.09.448

Subekti, E. (2010). Ketahanan Pakan Ternak Indonesia. Jurnal Ilmu-Ilmu Pertanian, 5(2), 63–71.

Udomkun, P., Wossen, T., Nabahungu, N. L., Mutegi, C., Vanlauwe, B., & Bandyopadhyay, R. (2018). Incidence and farmers’ knowledge of aflatoxin contamination and control in Eastern Democratic Republic of Congo. Food Science and Nutrition, 6(6), 1607–1620. https://doi.org/10.1002/fsn3.735

Udomkun, P., Wiredu, A. N., Nagle, M., Müller, J., Vanlauwe, B., & Bandyopadhyay, R. (2017). Innovative technologies to manage aflatoxins in foods and feeds and the profitability of application – A review. Food Control, 76, 127–138. https://doi.org/10.1016/j.foodcont.2017.01.008

Van Egmond, H. P., Schothorst, R. C., & Jonker, M. A. (2007). Regulations relating to mycotoxins in food: PPPPerspectives in a global and European context. Analytical and Bioanalytical Chemistry, 389(1), 147–157. https://doi.org/10.1007/s00216-007-1317-9

Wild, C. P., & Gong, Y. Y. (2009). Mycotoxins and human disease: A largely ignored global health issue. Carcinogenesis, 31(1), 71–82. https://doi.org/10.1093/carcin/bgp264

Zulkifli, N. A., & Zakaria, L. (2017). Morphological and Molecular diversity of aspergillus from corn grain used as livestock feed. HAYATI Journal of Biosciences, 24(1), 26–34. https://doi.org/10.1016/j.hjb.2017.05.002



DOI: https://doi.org/10.22146/agritech.56530

Article Metrics

Abstract views : 2814 | views : 2828

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Deasy Fitriati, Vera Ramashinta, Hastari Kusumawardhani

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

agriTECH has been Indexed by:


agriTECH (print ISSN 0216-0455; online ISSN 2527-3825) is published by Faculty of Agricultural Technology, Universitas Gadjah Mada in colaboration with Indonesian Association of Food Technologies.


website statisticsView My Stats