The Effect of Processing and Cooling Methods on Coleus tuberosus in vitro Starch Digestibility

https://doi.org/10.22146/agritech.44596

Jhauharotul Muchlisyiyah(1*), Tri Dewanti Widyaningsih(2), Retno Wulansari(3), Hera Sisca Prasmita(4)

(1) Food Science and Technology Department, Agricultural Technology Faculty, Universitas Brawijaya, Jl. Veteran Malang 65145
(2) Food Science and Technology Department, Agricultural Technology Faculty, Universitas Brawijaya, Jl. Veteran Malang 65145
(3) Food Science and Technology Department, Agricultural Technology Faculty, Universitas Brawijaya, Jl. Veteran Malang 65145
(4) Food Science and Technology Department, Agricultural Technology Faculty, Universitas Brawijaya, Jl. Veteran Malang 65145
(*) Corresponding Author

Abstract


Coleus tuberosus, also known as black potato, is one of the Indonesian local tubers consumed as a carbohydrate substituent. Therefore, this study aimed to examine the effect of processing and cooling methods on the in vitro digestibility of black potato starch. Furthermore, two factors Randomized Block Design with a 2x3 experimental design was used, which consisted of processing methods (boiling, roasting, and microwave) and cooling at room temperature and 4 °C for 24 hours with 3 repetitions. Black potato flour was compared with the raw form, by assessing some parameters, namely Resistant Starch (RS), Slowly Digestible Starch (SDS), Rapidly Digestible Starch (RDS), and Glycemic Index (GI). Also, the analysis of total starch, moisture, and color was performed, hence raw black potatoes generally have 10% resistant starch (%wb). Different treatments of cooking and cooling had a significant effect (α = 0.05) on moisture content, total starch, RS, RDS, SDS, GI, brightness (L), and yellowness (b). Black potatoes subjected to the processing method followed by cooling had lower RDS and increased RS content. Furthermore, refrigeration at 4°C for 24 hours reduced the digestibility of black potato starch more than cooling at room temperature. Contrarily, microwaved black potato cooled at room temperature showed a higher digestion rate compared to the raw counterpart. Conclusively, processing followed by cooling reduces the GI and increases the RS content of Coleus tuberosus.

Keywords


Coleus tuberosus; cooling; in vitro digestibility; processing; resistant starch

Full Text:

PDF


References

Alsaffar, A. A. (2011). Effect of food processing on the resistant starch content of cereals and cereal products - a review. International Journal of Food Science & Technology, 46(3), 455–462. https://doi.org/10.1111/j.1365-2621.2010.02529.x

Amon, A. S., Soro, R. Y., Assemand, E. F., Dué, E. A., & Kouamé, L. P. (2011). Effect of boiling time on chemical composition and physico-functional properties of flours from taro (Colocasia esculenta cv fouê) corm grown in Côte d’Ivoire. Journal of Food Science and Technology, 51(5), 855–864. https://doi.org/10.1007/s13197-011-0578-7

AOAC (Association of Official Analitical Chemist). (2005). Official methods of analysis. 18th edition. Gaithersburg (US): AOAC International

AOAC (Association of Official Analitical Chemist). (2002). Official methods of analysis. 17th edition. Marylan (US): AOAC International

Atkinson, F. S., Foster-Powell, K., & Brand-Miller, J. C. (2008). International Tables of Glycemic Index and Glycemic Load Values: 2008. Diabetes Care, 31(12), 2281–2283. https://doi.org/10.2337/dc08-1239

Capriles, V. D., Coelho, K. D., Guerra-Matias, A. C., & Arêas, J. A. G. (2008). Effects of processing methods on amaranth starch digestibility and predicted glycemic index. Journal of Food Science, 73(7), H160–H164. https://doi.org/10.1111/j.1750-3841.2008.00869.x

Eleazu, C. O., Eleazu, K. C., Iroaganachi, M. A., & Kalu, W. (2017). Starch digestibility and predicted glycemic indices of raw and processed forms of hausa potato (S olenostemon rotundifolius poir). Journal of Food Biochemistry, 41(3), e12355. https://doi.org/10.1111/jfbc.12355

Englyst, K. N., Liu, S., & Englyst, H. N. (2007). Nutritional characterization and measurement of dietary carbohydrates. European Journal of Clinical Nutrition, 61(S1), S19–S39. https://doi.org/:10.1038/sj.ejcn.1602937

Fitriani, S. (2008). Pengaruh suhu dan lama waktu pengeringan terhadap beberapa mutu manisan belimbing wuluh (Averrhoa blimbing L.) kering. Jurnal Teknologi Pangan, 7:32-37. https://ejournal.unri.ac.id/index.php/JSG/article/view/1100

Fu, Z., Wang, L., Li, D., Zhou, Y., & Adhikari, B. (2013). The effect of partial gelatinization of corn starch on its retrogradation. Carbohydrate Polymers, 97(2), 512–517. https://doi.org/10.1016/j.carbpol.2013.04.089

García-Alonso, A., Saura-Calixto, F., & Delcour, J. A. (1998). Influence of botanical source and processing on formation of resistant starch type III. Cereal Chemistry Journal, 75(6), 802–804. https://doi.org/10.1094/cchem.1998.75.6.802

Goñi, I., García-Alonso, A., & Saura-Calixto, F. (1997). A starch hydrolysis procedure to estimate glycemic index. Nutrition Research, 17(3), 427–437. https://doi.org/10.1016/s0271-5317(97)00010-9

González-Soto, R. A., Sánchez-Hernández, L., Solorza-Feria, J., Núñez-Santiago, C., Flores-Huicochea, E., & Bello-Pérez, L. A. (2006). Resistant starch production from non-conventional starch sources by extrusion. Food Science and Technology International, 12(1), 5–11. https://doi.org/10.1177/1082013206060735

Hare-Bruun, H., Nielsen, B. M., Grau, K., Oxlund, A. L., & Heitmann, B. L. (2008). Should glycemic index and glycemic load be considered in dietary recommendations? Nutrition Reviews, 66(10), 569–590. https://doi.org/10.1111/j.1753-4887.2008.00108.x

Hsum, Y., Yew, W., Hong, P., Soo, K., Hoon, L., Chieng, Y., & Mooi, L. (2010). Cancer chemopreventive activity of maslinic acid: suppression of COX-2 expression and inhibition of NF-κB and AP-1 activation in raji cells. Planta Medica, 77(02), 152–157. https://doi.org/10.1055/s-0030-1250203

Inan Eroglu, E., & Buyuktuncer, Z. (2017). The effect of varıous cookıng methods on resıstant starch content of foods. Nutrition & Food Science, 47(4). doi:10.1108/nfs-10-2016-0154

Indonesian Ministry of Health. (2013). Riset Kesehatan Dasar. Jakarta: Indonesian Ministry of Health

Jenkins, D. J., Wolever, T. M., Taylor, R. H., Barker, H., Fielden, H., Baldwin, J. M., Bowling, A. C., Newman, H. C., Jenkins, A. L., & Goff, D. V. (1981). Glycemic index of foods: a physiological basis for carbohydrate exchange. The American Journal of Clinical Nutrition, 34(3), 362–366. https://doi.org/10.1093/ajcn/34.3.362

Jiang, F., Du, C., Jiang, W., Wang, L., & Du, S. (2020). The preparation, formation, fermentability, and applications of resistant starch. International Journal of Biological Macromolecules, 150, 1155–1161. doi:10.1016/j.ijbiomac.2019.10.124

Kwak, J. H., Paik, J. K., Kim, H. I., Kim, O. Y., Shin, D. Y., Kim, H.-J., Lee, J. H., & Lee, J. H. (2012). Dietary treatment with rice containing resistant starch improves markers of endothelial function with reduction of postprandial blood glucose and oxidative stress in patients with prediabetes or newly diagnosed type 2 diabetes. Atherosclerosis, 224(2), 457–464. https://doi.org/10.1016/j.atherosclerosis.2012.08.003

Le Bourvellec, C., Le Quéré,, J.-M., Sanoner, P., Drilleau, J.-F., & Guyot, S. (2004). Inhibition of apple polyphenol oxidase activity by procyanidins and polyphenol oxidation products. Journal of Agricultural and Food Chemistry, 52(1), 122–130. https://doi.org/10.1021/jf034461q

Matignon, A., & Tecante, A. (2017). Starch retrogradation: From starch components to cereal products. Food Hydrocolloids, 68, 43–52. doi:10.1016/j.foodhyd.2016.10.032

Miao, M., Jiang, B., Cui, S. W., Zhang, T., & Jin, Z. (2013). Slowly digestible starch—a review. Critical Reviews in Food Science and Nutrition, 55(12), 1642–1657. https://doi.org/10.1080/10408398.2012.704434

Nugraheni, M., Santoso, U., & Wuryastuti, H. (2011). Potential of Coleus tuberosus as an antioxidant and cancer chemoprevention agent. International Food Research Journal, 18(4). https://doi.org/10.5897/jmpr11.122

Nugraheni, M., Santoso, U., & Windarwati, W. (2014). Effect of consumption of Coleus tuberosus on the lipid profile of alloxan-induced diabetic rats. Advance Journal of Food Science and Technology, 6(2), 159–166. https://doi.org/10.19026/ajfst.6.3

Nugraheni, M., Hamidah, S., & Windarwati, W. (2015). Effect of Coleus tuberosus flour high resistant starch consumption in glucose, lipid, digest and short chain fatty acid profile in normal rats. Advance Journal of Food Science and Technology, 8(12), 844–852. https://doi.org/10.19026/ajfst.8.2718

Patindol, J. A., Guraya, H. S., Champagne, E. T., & McClung, A. M. (2010). Nutritionally important starch fractions of rice cultivars grown in Southern United States. Journal of Food Science, 75(5). https://doi.org/10.1111/j.1750-3841.2010.01627.x

Péronnet, F., Meynier, A., Sauvinet, V., Normand, S., Bourdon, E., Mignault, D., St-Pierre, D. H., Laville, M., Rabasa-Lhoret, R. & Vinoy, S. (2015). Plasma glucose kinetics and response of insulin and GIP following a cereal breakfast in female subjects: effect of starch digestibility. European Journal of Clinical Nutrition, 69(6), 740–745. https://doi.org/10.1038/ejcn.2015.50

Rendon-Villalobos, R., Bello-Pérez, L. A., Osorio-Díaz, P., Tovar, J., & Paredes-López, O. (2002). Effect of storage time on in vitro digestibility and resistant starch content of nixtamal, masa, and tortilla. Cereal Chemistry Journal, 79(3), 340–344. https://doi.org/10.1094/cchem.2002.79.3.340

Revsilia, R. (2012). Evaluasi Kandungan Nutrien Panicum maximum, Brachiaria decumbens dan Pueraria thunbergiana Melalui Metode Pengeringan yang Berbeda. Institut Pertanian Bogor. Bogor

Rimbawan & Siagian, A. (2004). Indeks Glikemik Pangan. Penebar Swadaya. Jakarta

Hare-Bruun, H., Nielsen, B. M., Grau, K., Oxlund, A. L., & Heitmann, B. L. (2008). Should glycemic index and glycemic load be considered in dietary recommendations? Nutrition Reviews, 66(10), 569–590. https://doi.org/10.1111/j.1753-4887.2008.00108.x

Singh, J., Dartois, A., & Kaur, L. (2010). Starch digestibility in food matrix: a review. Trends in Food Science & Technology, 21(4), 168–180. doi:10.1016/j.tifs.2009.12.001

Soewondo, P., & Pramono, L. A. (2011). Prevalence, characteristics, and predictors of pre-diabetes in Indonesia. Medical Journal of Indonesia, 283. https://doi.org/10.13181/mji.v20i4.465

Tovar, J., Melito, C., Herrera, E., Rascón, A., & Pérez, E. (2002). Resistant starch formation does not parallel syneresis tendency in different starch gels. Food Chemistry, 76(4), 455–459. https://doi.org/10.1016/s0308-8146(01)00306-5

Vinoy, S., Normand, S., Meynier, A., Sothier, M., Louche-Pelissier, C., Peyrat, J., Maitrepierre, C., Nazare, J. A., Brand-Miller, J., & Laville, M. (2013). Cereal processing influences postprandial glucose metabolism as well as the GI effect. Journal of the American College of Nutrition, 32(2), 79–91. https://doi.org/10.1080/07315724.2013.789336

Weickert, M. O., & Pfeiffer, A. F. H. (2008). Metabolic effects of dietary fiber consumption and prevention of diabetes. The Journal of Nutrition, 138(3), 439–442. https://doi.org/10.1093/jn/138.3.439

Xie, Y.-Y., Hu, X.-P., Jin, Z.-Y., Xu, X.-M., & Chen, H.-Q. (2014). Effect of temperature-cycled retrogradation on in vitro digestibility and structural characteristics of waxy potato starch. International Journal of Biological Macromolecules, 67, 79–84. https://doi.org/10.1016/j.ijbiomac.2014.03.007

Yuwono, S. S. & Susanto, T. (1998). Pengujian Fisik Pangan. Fakultas Teknologi Pertanian. Universitas Brawijaya. Malang.

Zhang, G., & Hamaker, B. R. (2009). Slowly digestible starch: concept, mechanism, and proposed extended glycemic index. Critical Reviews in Food Science and Nutrition, 49(10), 852–867. https://doi.org/10.1080/10408390903372466



DOI: https://doi.org/10.22146/agritech.44596

Article Metrics

Abstract views : 1896 | views : 1749

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Jhauharotul Muchlisyiyah, Tri Dewanti Widyaningsih, Retno Wulansari, Hera Sisca Prasmita

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

agriTECH has been Indexed by:


agriTECH (print ISSN 0216-0455; online ISSN 2527-3825) is published by Faculty of Agricultural Technology, Universitas Gadjah Mada in colaboration with Indonesian Association of Food Technologies.


website statisticsView My Stats