Teknologi Kolektor Surya Berlubang tanpa Kaca Transparan untuk Mengeringkan Daun Gaharu

https://doi.org/10.22146/agritech.30360

Irwin Bizzy(1*), Budi Santoso(2), Muhammad Zahri Kadir(3)

(1) Jurusan Teknik Mesin, Fakultas Teknik, Universitas Sriwijaya, Jl. Raya Palembang-Prabumulih Km. 32, Inderalaya, Ogan Ilir 30662
(2) Jurusan Teknologi Pertanian, Fakultas Pertanian, Universitas Sriwijaya, Jl. Raya Palembang-Prabumulih Km. 32, Inderalaya, Ogan Ilir 30662
(3) Jurusan Teknik Mesin, Fakultas Teknik, Universitas Sriwijaya, Jl. Raya Palembang-Prabumulih Km. 32, Inderalaya, Ogan Ilir 30662
(*) Corresponding Author

Abstract


The perforated solar collector technology is a highly potential solution to take advantage of renewable energy in tropical countries such as Indonesia. This technology can be applied as a simple technology for drying of agricultural products. This study aims to determine the rate of the decreased moisture content of gaharu leafs. In this study, the perforated solar collector equipped with four ribs was used. The efficiency evaluation of perforated solar collector plate was conducted in Wind Tunnel-Rig, Basic phenomenon Laboratory of Mechanical Engineering Department, Sriwijaya University. The dimension of the plate is 850 mm × 300 mm × 1.5 mm, which has 1018 holes with 2.5 mm in diameter. The results show that the drying rate for achieving the 10% moisture content of the gaharu leafs, can be reached in 2–3 days. This condition occurs when the weather is sunny, or not cloudy and rainy. In other condition, when the sunshine with an average solar irradiation on the surface is greater than or equal 500 W/m2. The efficiency tests of the perforated  aluminum plate solar collector using wind velocity as input parameter show that the blackened plate resulted in better performance (12,83%) than the colorless one in (6,36%).

 

ABSTRAK

Teknologi kolektor surya berlubang ini merupakan salah satu solusi untuk dapat memanfaatkan energi baru terbarukan yang peluangnya sangat besar untuk dikembangkan di negara beriklim tropis seperti negara Indonesia. Teknologi ini dapat digunakan sebagai teknologi tepat guna untuk mengeringkan produk-produk pertanian. Tujuan penelitian ini adalah untuk menentukan laju penurunan kadar air daun gaharu. Dalam pengujian pengeringan ini digunakan kolektor surya berlubang bersayap empat. Evaluasi efisiensi pelat kolektor surya berlubang dilakukan di Wind Tunnel Laboratorium Fenomena Dasar, Jurusan Teknik Mesin, Universitas Sriwijaya. Dimensi dari pelat kolektor surya berlubang adalah 850 mm x 300 mm x 1,5 mm, dengan jumlah lubang 1.018 buah yang berdiameter 2,5 mm. Hasil penelitian menunjukkan bahwa laju pengeringan daun gaharu untuk mencapai kadar air 10 % dapat dihasilkan dalam 2 ¸ 3 hari.  Kondisi ini terjadi bila cuaca cerah, tidak hujan dan tidak berawan. Dalam kondisi lain, ketika matahari bersinar dengan radiasi matahari rata-rata yang mencapai permukaan lebih besar atau sama dengan 500 W/m2. Pengujian efisiensi kolektor surya pelat alumunium berlubang dengan parameter kecepatan udara, menunjukkan bahwa pelat berwarna hitam menghasilkan performansi yang lebih baik (12,83%) dibandingkan dengan pelat tanpa warna (6,36%).


Keywords


Air velocity; efficiency; solar perforated collector; solar radiation

Full Text:

PDF


References

Arulanandam, S. J., Hollands, K. G. T., & Brundrett, E. (1999). A CFD heat transfer analysis of the transpired solar collector under no-wind conditions. Solar Energy, 67(1–3), 93–100. https://doi.org/10.1016/S0038-092X(00)00042-6.

Badache, M., Rousse, D. R., Hallé, S., & Quesada, G. (2013). Experimental and numerical simulation of a two-dimensional unglazed transpired solar air collector. Solar Energy, 93, 209–219. https://doi.org/10.1016/j.solener.2013.02.036.

Badache, M., Stephane, H., & Rousse, D. (2012). A full 3 4 factorial experimental design for efficiency optimization of an unglazed transpired solar collector prototype. Solar Energy, 86(9), 2802–2810. https://doi.org/10.1016/j.solener.2012.06.020.

Bagheri, N., Mohtasebi, S. S., Keyhani, A., Javadikia, P., & Abbaszadeh, R. (2012). Simulation and control of fan speed in a solar dryer for optimization of energy efficiency. Agricultural Engineering International: CIGR Journal, 14(1), 57–62.

Banout, J., Ehl, P., Havlik, J., Lojka, B., Polesny, Z., & Verner, V. (2011). Design and performance evaluation of a Double-pass solar drier for drying of red chilli (Capsicum annum L.). Solar Energy, 85(3), 506–515. https://doi.org/10.1016/j.solener.2010.12.017.

Bizzy, I. (1996). Kaji Eksprimental Pemanas Udara Surya Jenis Pelat Berlubang Tanpa Penutup Transparan. Institut Teknologi Bandung.

Bizzy, I., Riman, S., Nukman., Muhammad Z, K., Barlin., & Hendrie, S. (2012). Kaji eksprimental alat pengering pucuk daun gaharu tenaga surya tipe rak dengan menggunakan pelat berlubang tanpa penutup transparan, 2012.

Collins, M. R., & Abulkhair, H. (2014). An evaluation of heat transfer and effectiveness for unglazed transpired solar air heaters. Solar Energy, 99, 231–245. https://doi.org/10.1016/j.solener.2013.11.012.

Croitoru, C., Nastase, I., Voicu, I., Meslem, A., & Sandu, M. (2016). Thermal Evaluation of an Innovative Type of Unglazed Solar Collector for Air Preheating. Energy Procedia, 85(November 2015), 149–155. https://doi.org/10.1016/j.egypro.2015.12.285.

Eryener, D., & Akhan, H. (2016). The Performance of First Transpired Solar Collector Installation in Turkey. Energy Procedia, 91(1115), 442–449. https://doi.org/10.1016/j.egypro.2016.06.172.

Kamaludin, H. (2012). Uji tingkat keamanan minuman teh gaharu terhadap tikus putih. Laporan hasil penelitian bekerjasama antara Pusat Penlitian Pangan Lembaga Penelitian Universitas Sriwijaya dan Pemerintah Kabupaten Bangka Tengah Provinsi Kepulauan Bangka Belitung.

Li, S., Karava, P., Savory, E., & Lin, W.E. (2013). Airflow and thermal analysis of flat and corrugated unglazed transpired solar collectors. Solar Energy, 91(2013) 297-315. http://dx.doi.org/10.1016/j.solener.2013.01.028.

Lingayat, A., Chandramohan, V.P., Raju, V.R.K. (2017). Design, development and performance od indirect type solar dryer for banana drying. Energy Procedia, 109(2017), 409-416.

Mohsin,  a. S. M., Maruf, M. N. I., Sayem,  a. H. M., Mojumdar, M. R. R., & Shamim Farhad, H. M. (2011). Prospect & Future of Solar Dryer: Perspective Bangladesh. International Journal of Engineering and Technology, 3(2), 165–170. https://doi.org/10.7763/IJET.2011.V3.217.

Santoso, B., Rindit, P., HMT, K., Muhammad, S., & Bizzy, I. (2012). Pemanfaatan daun gaharu menjadi minuman teh yang bersifat fungsional dan pengujian tingkat keamanannya, 2012.

Vijayavenkataraman, S., Iniyan, S., & Goic, R. (2012). A review of solar drying technologies. Renewable and Sustainable Energy Reviews, 16(5), 2652–2670. https://doi.org/10.1016/j.rser.2012.01.007.



DOI: https://doi.org/10.22146/agritech.30360

Article Metrics

Abstract views : 548 | views : 898

Refbacks

  • There are currently no refbacks.




Copyright (c) 2018 Agritech

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Agritech has been Indexed by:


Agritech (print ISSN 0216-0455; online ISSN 2527-3825) is published by Faculty of Agricultural Technology, Universitas Gadjah Mada in colaboration with Indonesian Association of Food Technologies.


website statisticsView My Stats