Model Matematis Pengeringan Pati Sagu pada Pneumatic Conveying Recirculated Dryer

https://doi.org/10.22146/agritech.15311

Abadi Jading(1*), Nursigit Bintoro(2), Lilik Sutiarso(3), Joko Nugroho Wahyu Karyadi(4)

(1) Jurusan Teknologi Pertanian, Fakultas Teknologi Pertanian, Universitas Papua, Jl. Gunung Salju, Amban, Manokwari, Papua Barat 98314
(2) Departemen Teknik Pertanian dan Biosistem, Fakultas Teknologi Pertanian, Universitas Gadjah Mada, Jl. Flora No. 1, Bulaksumur, Yogyakarta 55281
(3) Departemen Teknik Pertanian dan Biosistem, Fakultas Teknologi Pertanian, Universitas Gadjah Mada, Jl. Flora No. 1, Bulaksumur, Yogyakarta 55281
(4) Departemen Teknik Pertanian dan Biosistem, Fakultas Teknologi Pertanian, Universitas Gadjah Mada, Jl. Flora No. 1, Bulaksumur, Yogyakarta 55281
(*) Corresponding Author

Abstract


Flour drying could be conducted by using pneumatic conveying dryer (PCD) or flash dryer, but generally it is required a high vertical pipe. The high of vertical pipe may be replaced with a recirculation process to produce a required final moisture content of the material. This study had designed pneumatic conveying recirculated dryer (PCRD) to dryi of wet sago starch. Later, the design was used to determine a mathematical model of the relationship between the variables of drying process with final moisture content of the material. The purpose of this study was to develop a mathematical model of the relationship between the final moisture content of wet sago starch  with variables drying process and recirculation continuously in the pneumatic conveying recirculated dryer (PCRD) using dimensional analysis. Buckingham Phi Theorem methods of dimensional analysis was used to find the relationship variables that affect the final moisture content of wet sago starch on the PCRD machine. The mathematical model generated in this study is

 

 

 

 

 

 

The coefficient of determination (R2) of the mathematical model was 0.948, or 94.8 %, indicated that the model was valid to predict the final moisture content of wet sago starch in designing PCRD machines. While the sensitivity of the test results showed that the dimensionless product of the most influential are , , and . The model was applicable for drying wet sago starch or other starch material which is similat to the physical properties of wet sago starch.

 

ABSTRAK

Pengeringan bahan-bahan tepung dapat dilakukan dengan pneumatic conveying dryer (PCD) atau flash dryer, namun umumnya memerlukan pipa vertikal yang cukup tinggi. Pipa vertikal yang tinggi dapat diganti dengan proses resirkulasi untuk menghasilkan kadar air akhir bahan yang disyaratkan. Pada penelitian ini telah dirancang pneumatic conveying recirculated dryer (PCRD) untuk mengeringkan pati sagu basah, serta dicari model hubungan matematis antara variabel-variabel proses pengeringan dengan kadar air akhir. Tujuan penelitian ini adalah mengembangkan model matematis hubungan antara kadar air akhir pati sagu basah dengan variabel-variabel proses pengeringan resirkulasi secara kontinyu pada pneumatic conveying recirculated dryer (PCRD) menggunakan analisis dimensi. Metode Buckingham Phi Theorem dalam analisis dimensi digunakan untuk mencari hubungan variabel-variabel yang berpengaruh terhadap kadar air akhir pati sagu basah pada mesin PCRD. Model matematis yang dihasilkan pada penelitian ini adalah

 

 

 

 

 

 

Nilai koefisien determinasi (R2) dari model matematis tersebut adalah 0,948 atau 94,8 %, menunjukkan bahwa model tersebut valid digunakan untuk memprediksi kadar air akhir pati sagu basah dalam merancang mesin PCRD. Sedangkan hasil uji sensitivitas menunjukkan bahwa dimensionless product yang paling berpengaruh adalah , , dan . Model tersebut berlaku untuk pengeringan pati sagu basah atau bahan-bahan tepung lainnya yang sifat fisiknya identik dengan pati sagu basah.


Keywords


Dimensional analysis; final moisture content; mathematical model; pneumatic conveying recirculated dryer; sago starch



References

Aichayawanic, S., Nopharatana, M., Nopharatana, A., & Songkasiri, W. (2012). Efects of pneumatics conveying drying conditions on damaged starch content and partcle size of cassava starch. Advance Materials Research, 554556, 1433–1438.

AOAC. (2005). Official Methods of Analysis of AOAC International. Arlington, Virginia USA.

Banooni, S., Hajidavallo, E., & Dorfeshan, M. (2017). A comprehensive review on modeling of pneumatic and flash drying. Drying Technology, 35(15), 1–19. https://doi.org/dx.doi.org/10.1080/07373937.2017.1298123.

Barr, D. J., & Baker, C. G. J. (1997). Specialized Drying Systems. In C. G. . Baker (Ed.), Industrial Drying of Foods (pp. 179–193). New York: Blackie Acamedic & Professional.

Bhattarai, S., Jae-Heun, O. H., Euh, S. H., Kim, D. H., & Yu, L. (2014). Simulation study for pneumatic conveying drying of sawdust for pellet production. Drying Technology, 32, 335–344.

Bunyawanichakul, P., Walker, G. J., Sargison, J. E., & Doe, P. E. (2007). Modelling and simulation of paddy grain (rice) drying in a simple pneumatic dryer. Biosystems Engineering, 96(3), 335–344. https://doi.org/10.1016/j.biosystemseng.2006.11.004.

Chapuis, A., Precoppe, M., Meot, J. M., Sriroth, K., & Tran, T. (2016). Pneumatic drying of cassava starch: Numerical analysis and guidelines for the design of efficient small-scale dryers. Drying Technology, 35(4), 393–408. https://doi.org/dx.doi.org/10.1080/07373937.2016.1177537.

de Pádua, T. F., Béttega, R., & Freire, J. T. (2015). Gas-solid flow behavior in a pneumatic conveying system for drying applications : Coarse particles feeding with a venturi vevice. Advance in Chemical Engineering and Science, 5(July), 225–238.

Jading, A., Bintoro, N., Sutiarso, L., & Karyadi, J. N. W. (2016). Analisis efisiensi pneumatic conveying recirculated dryer untuk pengeringan bahan-bahan tepung. In Partoyo, Y. . Ratih, D. Mulyanto, & E. Al (Eds.), Seminar Nasional Fakultas Pertanian UPN Veteran Yogyakarta (pp. 370–378). Yogyakarta.

Jading, A., Bintoro, N., Sutiarso, L., & Karyadi, J. N. W. (2017). Model jaringan syaraf tiruan untuk memprediksi kadar air bahan pada pneumatic conveying recirculated dryer. Jurnal Teknologi Industri Pertanian, 27(2), 141–151. https://doi.org/10.24961/j.tek.ind.pert.2017.27.2.141.

Kaensup, W., Kulwong, S., & Wongwises, S. (2006). A Small-scale pneumatic conveying dryer of rough rice. Drying Technology, 24(1), 105–113. https://doi.org/10.1080/07373930500538899.

Kisakurek, B. (1995). Flash Drying. In A. S. Mujumdar (Ed.), Handbook of Industrial Drying (2nd ed, pp. 503–524). New York: Marcel Dekker.

Levy, A., & Borde, I. (2006). Pneumatic and Flash Drying. (A. S. Mujumdar, Ed.), Handbook of Industrial Drying (Third). Marcel Dekker. https://doi.org/10.1201/9781420017618.ch16.

Murphy, G. (1950). Similitude in Engineering. New York: The Ronald Press Company.

Nugroho, J. K. W., Primawati, Y. F., & Bintoro, N. (2012). Proses pengeringan singkong ( Manihot esculenta crantz ) parut dengan menggunakan pneumatic dryer. In Seminar Nasional PERTETA (pp. 96–104). Denpasar, Indonesia.

Otuu, O. O., Omenyi, S., & Nwigbo, S. (2013). Finite element modelling of cassava flash drying in a vertically upward pneumatic conveying dryer. Journal of Engineering and Applied Sciences, 9, 24–41.

Rahayoe, S., Distantina, S., & Perdana, I. (2011). Simulasi perancangan flash dryer untuk pengeringan tepung tapioka pada tingkat UMKM. In Seminar Nasional PERTETA (pp. 270–281). Jember.

Suherman, Kumoro, A. C., & Kusworo, T. D. (2015). Eksperimental study on drying kinetics of cassava starch in a pneumatic drying system. In ICCME (pp. 1–6). Semarang, Indonesia: AIP Publishing LLC. https://doi.org/http://dx.doi.org/10.1063/1.4938337.

Tanaka, F., Uchino, T., Hamanaka, D., & Atungulu, G. G. (2008). Mathematical modeling of pneumatic drying of rice powder. Journal of Food Engineering, 88(4), 492–498. https://doi.org/10.1016/j.jfoodeng.2008.03.014.

Tolmač, D., Blagojević, Z., Prvulović, S., Tolmač, J., & Radovanović, L. (2010). Experimental study on drying kinetic and energetic characteristics of convection pneumatic dryer. Facta Universitatis: Mechanical Engineering, 8(1), 89–96.

Witdarko, Y., Bintoro, N., & Rahardjo, B. (2016). Pemodelan matematis hubungan kadar air tepung dengan variabel proses pada pengeringan mekanis tepung kasava menggunakan pneumatic dryer. Agritech, 36(1), 111–116.



DOI: https://doi.org/10.22146/agritech.15311

Article Metrics

Abstract views : 620 | views : 1054

Refbacks

  • There are currently no refbacks.




Copyright (c) 2018 Jurnal Agritech

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Agritech has been Indexed by:


Agritech (print ISSN 0216-0455; online ISSN 2527-3825) is published by Faculty of Agricultural Technology, Universitas Gadjah Mada in colaboration with Indonesian Association of Food Technologies.


website statisticsView My Stats