Identifikasi Tingkat Ketuaan dan Kematangan Pepaya (Carica papaya L.) IPB 1 dengan Pengolahan Citra Digital dan Jaringan Syaraf Tiruan

https://doi.org/10.22146/agritech.9496

Enrico Syaefullah(1*), Hadi K Purwadaria(2), Sutrisno Sutrisno(3), Suroso Suroso(4)

(1) Mahasiswa Sekolah Pascasarjana Program Studi Keteknikan Pertanian SPs-IPB, Fateta IPB, Kampus IPB Darmaga, PO Box 220 Bogor 16002
(2) Departemen Teknik Pertanian Fateta IPB, Kampus IPB Darmaga, PO Box 220 Bogor 16002
(3) Departemen Teknik Pertanian Fateta IPB, Kampus IPB Darmaga, PO Box 220 Bogor 16002
(4) Departemen Teknik Pertanian Fateta IPB, Kampus IPB Darmaga, PO Box 220 Bogor 16002
(*) Corresponding Author

Abstract


The objective of this research was to identify the maturity and ripeness of papaya using image processing and artificial neural network. The images of papaya IPB 1 were captured using digital camera. And then processed using image processing algorithm. The image processing algorithm was developed and applied to 150 samples of papaya from three level of ripeness; growth, mature and ripe and 150 samples of papaya from three level of maturity based on their harvest time. The color indexes and shape factors were extracted from sample images using the developed image processing algorithm. The features extracted from the image processing were used as input to develop artificial neural network that modelled into 7 inputs with the level of maturity and ripeness as output. Neural network program used the value of momentum constant 0.5, learning rate value contant 0.6, sigmoid function value 1 and 10000 iteration. The result showed that the use of 7 image processing features as input on 3 hidden layers provided the highest accuracy of validation of 97.8% in validation process, and 100% accuracy in classifying the papaya based on its maturity and ripeness.

ABSTRAK

Penelitian ini bertujuan mengidentifikasi ketuaan dan kematangan buah pepaya dengan menggunakan pengolahan citra dan jaringan syaraf tiruan. Citra pepaya diambil menggunakan kamera digital. Citra diproses menggunakan algoritma pengolahan citra. Algoritma pengolahan citra dibangun untuk 150 contoh pepaya dari tiga tingkat kematangan yaitu muda, tua dan matang dan 150 contoh pepaya dari tiga tingkat ketuaan berdasar pada umur petiknya. Indeks warna dan tekstur didapat dari contoh citra menggunakan algoritma pengolahan citra yang dibangun. Hasil pengolahan citra digunakan sebagai input untuk membangun jaringan syaraf tiruan yang dimodelkan dengan 7 input dengan tingkat ketuaan dan kematangan sebagai output. Hasil penelitian menunjukkan bahwa dengan konstanta laju pembelajaran 0.6, konstanta momentum sebesar 0.5, nilai fungsi aktivasi 1 dan dilatih sampai 10000 iterasi serta 3 lapisan tersembunyi pada jaringan syaraf tiruan yang digunakan diperoleh tingkat keakuratan yang tinggi mencapai 97.89% dan 100% pada klasifikasi pepaya berdasarkan ketuaan dan kematangan .


Keywords


Papaya IPB 1; image processing; artificial neural network; maturity; ripeness

Full Text:

PDF



DOI: https://doi.org/10.22146/agritech.9496

Article Metrics

Abstract views : 4091 | views : 6334

Refbacks

  • There are currently no refbacks.




Copyright (c) 2014 Enrico Syaefullah, Hadi K Purwadaria, Sutrisno Sutrisno, Suroso Suroso

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

agriTECH has been Indexed by:


agriTECH (print ISSN 0216-0455; online ISSN 2527-3825) is published by Faculty of Agricultural Technology, Universitas Gadjah Mada in colaboration with Indonesian Association of Food Technologies.


website statisticsView My Stats