Komposisi Asam Lemak, Angka Peroksida, dan Angka TBA Fillet Ikan Kakap (Lutjanus sp) pada Suhu dan Lama Penyimpanan Berbeda


Rahim Husain(1*), Suparmo Suparmo(2), Eni Harmayani(3), Chusnul Hidayat(4)

(1) Fakultas Perikanan dan Kelautan, Universitas Negeri Gorontalo, Jl. Jendral Sudirman No. 6 Kota Gorontalo
(2) Departemen Teknologi Pertanian dan Hasil Pertanian, Fakultas Teknologi Pertanian, Universitas Gadjah Mada. Jl. Flora No. 1, Bulaksumur, Yogyakarta
(3) Departemen Teknologi Pertanian dan Hasil Pertanian, Fakultas Teknologi Pertanian, Universitas Gadjah Mada. Jl. Flora No. 1, Bulaksumur, Yogyakarta
(4) Departemen Teknologi Pertanian dan Hasil Pertanian, Fakultas Teknologi Pertanian, Universitas Gadjah Mada. Jl. Flora No. 1, Bulaksumur, Yogyakarta
(*) Corresponding Author


Fish has a high nutritional value and is a major food source in many countries. Fish lipid has a high content of polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic acid (EPA; 20: 5n-3) and docosahexsanoic acid (DHA; 22: 6n-3). The objective of this research was to determine fatty acids composition of snapper (Lutjanus sp) fillet and its damage during the storage process. The results showed that total of the saturated fatty acids (SFA) increased from 4.35% to 25.55%, 28.06%, 32.73%, and 61.75% during storage at 0 °C, 10 °C, 20 °C, 30 °C, and 40 °C, respectively. Total mono-unsaturated fatty acids (MUFA) were 23.72%, 23.69%, 14.4%, 22.66%, and 29.4% at storage temperature of 0 °C, 10 °C, 20 °C, 30 °C, and 40 °C. Total PUFA decreased from 25.06% to 15.98%, 14.99%, 10.32%, and 8.84% at 0 °C, 10 °C, 20 °C, 30 °C, and 40 °C. Peroxide value, as primary peroxide of snapper fillet, increased about 10.60 times with an increased in storage temperature from 0 °C to 40 °C. Value of TBA increased 6.60 times with an increased in temperature from 0 °C to 40 °C during 45 days.


Ikan memiliki nilai gizi tinggi dan merupakan sumber makanan utama di banyak negara. Lipid ikan memiliki kandungan tinggi asam tak jenuh ganda (Poly Unsaturated Fatty Acid, PUFA), terutama asam eikosapentanoat (EPA; 20:5n-3) dan asam docosahexsanoat (DHA; 22:6n-3). Penelitian ini bertujuan untuk mengetahui komposisi asam lemak fillet ikan kakap (Lutjanus sp) dan kerusakan akibat proses penyimpanan. Hasil analisis asam lemak jenuh (Saturated Fatty Acid, SFA) menunjukkan bahwa asam lemak jenuh meningkat dari 4,35% menjadi 25,55%, 28,06%, 32,73%, dan 61,75% selama penyimpanan pada 0 °C, 10 °C, 20 °C, 30 °C, dan 40 °C. Total asam lemak tak jenuh (Mono Unsaturated Fatty Acid, MUFA) adalah 23,72%, 23,69, 14,4%, 22,66%, dan 29,4% pada penyimpanan 0 °C, 10 °C, 20 °C, 30 °C, dan 40 °C. Sedangkan total PUFA turun dari 25,05% menjadi 15,98%, 14,99%, 10,32%, dan 8,84%  pada penyimpanan 0 °C, 10 °C, 20 °C, 30 °C, dan 40 °C. Angka  peroksida sebagai produk primer dari oksidasi  fillet ikan kakap  meningkat 10,6 kali dengan kenaikan suhu dari 0 °C sampai 40 °C. Angka TBA meningkat 6,6 kali dari suhu 0 °C ke suhu 40 °C pada lama penyimpanan 45 hari.

Kata kunci: Komposisi asam lemak; fillet ikan kakap (Lutjanus sp); angka peroksida; angka TBA


Fatty acid composition; fillet snapper (Lutjanus sp); peroxide value; TBA value

Full Text:



Adnan, M. (1980). Lipid Properties and Stability of Partially Defatted Peanuts. Doctor Thesis, Department of Food Science, University of Illinois, Urbana-Champaign.

AOAC. (2006). Official Methods of Analysis of the Association of Official Analytical Chemistry”, Association of Official Analysis Chemistry, Washington, DC.

Aranda, M., Mendoza, N. dan Villegas, R. (2005). Lipid damage during frozen storage of whole jack mackerel (Trachurrus symmetricus Murphyi). Journal of Food Lipids 13: 155–166.

Badii, F. dan Howell, N.K. (2012). Changes in the texture and structure of cod and haddock fillets during frozen storage. Food Hydrocolloids 16(4): 313–319.

Bayir, A. dan Sirkecioglu, A.N. (2006). Fatty acid composition in some selected marine fish species living in Turkish water. Journal of Science and Food Agriculture 86: 163–168.

Benjakul, S., Viessanguan, W., Thongkaew, C. dan Tanaka, M. (2005). Effect of frozen storage on chemical and gel-forming properties of fish commonly used for surimi production in Thailand. Food Hydrocolloids 19(2): 197–207.

Boran, G., Karach dan Boran, M. (2006). Changes in the quality of fish oils due to storage temperature and time. Food Chemistry 98: 693–698.

Chaijan, M., Benjakul, S., Visessanguan, W. dan Faustman, C. (2006). Changes of lipids in sardine (Sardinella gibbosa) muscle during iced storage. Food Chemistry 99: 81–83.

Cheng, J.H., Sun, D.W., Pu, H.B., Wang, Q.J., Chen, Y.N. (2014). Suitabilility of hyperspectral imaging for rapid evaluation of thiobarbituric acid (TBA) value in grass carp (Ctenopharyngodon idella) fillet. Food Chemistry 171: 258–265.

de Castro, F.A.F., Sant’Ana a, P.M.H., Campos, M.F., Costa, B.M.N., Silva, C.T.M., Salaro, L.A. dan Franceschini, C.D.S. (2007). Fatty acid composition of three freshwater fishes under different storage and cooking processes. Food Chemistry 103: 1080–1090.

Dragoev, S.G., Kiosev, D.D., Danchev, S.A., Ioncheva, N.I. dan Genov, N.S. (2008). Study on the oxidative processes in frozen fish. Journal of Agriculture and Science 4: 55–65.

Fijuwara, K., Oosawa, T. dan Saeki, H. (2008). Improved thermal stability and emulsifying proper-Ties of carp myofibrillar proteins by conjunction with dextran. Journal of Agricultural and Food Chemistery 46: 1257–1261.

Karami, B., Moradi, Y., Motallebi, A.A., Hosseini,  E. dan Soltani, M. (2015). Effects of frozen storage on fatty acids profile, chemical quality indices and sensory properties of red tilapia (Oreochromis niloticus × Tilapia mosambicus) fillets. Iranian Journal of Fisheries Sciences 12: 378–388.

Kolbe, E., Craven, C., Sylvia, G. dan Morrissey, M. (2004). Chilling and freezing guidelines to Maintain Onboard Quality and Safety of Albacore Tuna Agricultural Experiment Station. Oregon State University, Astoria, Oregon, USA.

McClements, D.J. dan Decker, E.A. (2000). Lipid oxidation in oil-in-water emulsions: Impact of moleculer enviroment on chemical reaction in heterogenous food system. Journal of Food Science 65: 1270–1282.

Nazemroaya, S., Sahari, A.M. dan Rezaei, M. (2009). Effect of frozen storage on fatty acid composition and changes in lipid content of Scomberomorus ommersoni and Carcharhinus dussumieri. Journal Application Ichthyology 25: 91–95.

Okada, M. (2010). Fish and Raw Material. In science of processing marine food product. Vol. I. editor. T. Motohiro, H. Kadota. K. Hashimoto. M. Katayama and T. Tokunaga. Japan International Coorporation Agency. Hyoga International Centre Japan.

Pak, C.S. (2005). Stability and Quality of Fish Oil during Typical Domestic Application. Fisheries Training Progamme, The United Nations University, Iceland.

Pazos, M., Gallardo, J.M., Torres, J.L. dan Medina, I. (2005). Activity of grape polyphenols as inhibitors of the oxidation of fish lipids and frozen fish muscle. Food Chemistry 92: 547–557.
Persson, P.O. dan Londahl, G. (2013). Freezing technology. Dalam: Mallet, C.P. (Ed.). Frozen Food Technology. Blackie Academic  and Professional, Glasgow, UK.

Pirestani, S., Sahari, M.A. dan Barzegar, M. (2010). Fatty acids changes during frozen storage in several fish species from South Caspian Sea. Journal Agricutural Science and Technology 12: 321–329.

Pourashouri, P., Shabanpour, B., Aubourg, S.P., Rohi, J.D. dan Shabani, A. (2009). Aninvestigation of rancidity inhibition during frozen storage of Wels catfish (Silurus glanis) fillets by previous ascorbic and citric acid treatment. International Journal of Food Science and Technology 44: 1503–1509.

Quitral, V., Donoso, M.L., Ortiz, J., Herrera, M.V., Araya, H. dan Aubourg, S.P. (2009). Chemical changes during the chilled storage of Chilean jack mackerel (Trachurus murphyi): Effect of a plant-extract icing system. LWT–Food Science and Technology 42: 1450–1454.

Richards, M.P. dan Hultin, H.O. (2012). Contributions of blood and blood components to lipid oxidation in fish muscle. Journal Agriculture Food Chemistry 50: 555–564.

Sarma, J., Reddy, G.V.S. dan Srikar, L.N. (2000). Effect of frozen storage on lipids and functional properties of proteins of dressed Indian oil sardine (Sardinella longiceps). Food Research International 33: 815–820.

Secbecic, N. dan Beutelspecher, S.C. (2005). Anti-oxidative vitamins perevent lipid-peroxidation and apoptosisi in corneal endotheliel cell. Cell Tissue Respirative 320: 465–475.

Semb, T.N. (2012). Analytical Methods for Determination of The Oxidative Status in Oils. Department of Biotechnology, Norwegian University of Science and Technology.

Seed, S. dan Howell, N.K. (2002). Effect of lipid oxidation and frozen storage on muscle proteins of Atlantic mackeral. Journal of the Science of Food and Agriculture 82: 579–586.

Shahidi, F. dan Miraliakkbari (2004). Omega-3 fatty acid composition and stability of seal lipids. Lipid in Food Flavors 16: 233–243.

Shaviklo, G.R. (2006). Quality Assessment of Ash Protein Isolates Using Surim Standard Methods. Reykjavik. The United Nations University, Ice/and.

Tokur, B. dan Korkmaz, K. (2007). The effects of an iron-catalyzed oxidation system on lipids and proteins of dark muscle fish. Food Chemistry 104: 754–760.

Yerlikaya, P. dan Gokoglu, N. (2010). Inhibitation effects of green tea and grape seed extract on lipid oxidation ini bonito fillet during frozen storage. International Journal of Food Science and Technology 45: 252–257.

DOI: https://doi.org/10.22146/agritech.11212

Article Metrics

Abstract views : 985 | views : 1745


  • There are currently no refbacks.

Copyright (c) 2018 Jurnal Agritech

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Agritech has been Indexed by:

Agritech (print ISSN 0216-0455; online ISSN 2527-3825) is published by Faculty of Agricultural Technology, Universitas Gadjah Mada in colaboration with Indonesian Association of Food Technologies.

website statisticsView My Stats