The Effects of Duration of Fermentation on Total Phenolic Content, Antioxidant Activity, and Isoflavones of The Germinated Jack Bean Tempeh (Canavalia Ensiformis)

  • Iva Tsalissavrina Nutrition Department, Faculty of Health Science, Universitas Brawijaya, Malang, Jawa Timur 65151, Indonesia
  • Agnes Murdiati Department of Food Science and Agricultural Product Technology, Faculty of Agricultural, Universitas Gadjah Mada, Yogyakarta, Jl. Flora Bulaksumur 55281, Indonesia
  • Sri Raharjo Department of Food Science and Agricultural Product Technology, Faculty of Agricultural, Gadjah Mada University , Indonesia
  • Lily Arsanti Lestari Department of Nutrition and Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada
Keywords: germinated jack bean tempeh, total phenolic, antioxidant activity, isoflavones, duration of fermentation

Abstract

The daily consumption pattern of people in Indonesia is very close to the consumption of side dishes derived from legumes, especially those consumed in the form of tempeh food products. The purpose of this study was to determine the content of total phenolic compounds, flavonoids, antioxidant activity and isoflavone content of germinated jackbean tempeh with a fermentation duration of 0–5 days. Isoflavone extract was obtained by the extraction method using 70% alcohol. The total content of phenolic compounds was measured by the method of Folin ciocalteau, antioxidant activity was measured with DPPH and isoflavone content was determined using High Performance Liquid Chromatography (HPLC).  The total content of phenolic compounds (TPC), antioxidant activity and isoflavone was analyzed using the ANOVA assay and differences between treatments compared to the Smallest Real Difference test with a meaningfulness level of 5%. The total phenolic compound content and the highest antioxidant activity during the tempeh fermentation process were obtained on the 5th day fermentation period of 10.70±0.31 (mg. GAE/g) for total phenolic and 457.04±151.91(%) for IC50 values with intergroup test results showed significant differences. The highest isoflavone deposits were also obtained at day 5 tempeh fermentation duration for all isoflavones i.e. daidzein, glycitein, genistein and factor-2 and there were significant differences between treatment groups.   The isoflavone content was 4.6341±1.7431 mg/kg for daidzein, 5.4483±2.2936 mg/kg for glycitein, 0.9236±0.3288 mg/kg for genistein and 0.458±0.209 for factor-2.   This study shows that the germination and fermentation process of tempeh causes changes in the content of total phenolic compounds and antioxidant activity as well as increasing and influencing the isoflavone profile.

References

Andriana, P., Astawan, M., Wresdiyanti,T. (2020). The Effect of Soybeans Germination on Nutrition Potentials and Bioactive Components of Fresh and Semangit Tempe. Jurnal Pangan, Vol 29 (1) : 35-44
Andriati Ningrum, Sri Anggrahini, Widiatuti Setyaningsih, Sofiana, I., Pusparasi, D.A. & Mossberg, F.. (2018). Physicochemical characterization of jack bean (Canavalia ensiformis) tempeh. Food Research, Vol (2): 481-485. DOI:10.26656/fr.2017.2(5).300.
Astawan, M. dan Hazmi. K. (2016). Physicochemical Characteristics of Germinated Soybean Flour. Jurnal Pangan 25: 105-112.
Barz, W. Ang G.B. Papendorf. (1990). Metabolism of isoflavones and formation of factor-2 by tempeh producin microorganism Tempeh Workshop, Cologne.
Badan Pusat Statistik Republik Indonesia (BPS). (2021). Rata-rata Konsumsi Tahu dan Tempe per Kapita (2010-2021). https://dataindonesia.id/sektor-riil/detail/konsumsi-tahu-dan-tempe-per-kapita-di-indonesia-naik-pada-2021
Boutas I, Kontogeorgi A, Dimitrakakis C, Kalantaridou SN. (2022). Soy Isoflavones and Breast Cancer Risk: A Meta-analysis. In Vivo, Mar-Apr;36(2):556-562. doi: 10.21873/in vivo.12737. PMID: 35241506; PMCID: PMC8931889.
Damayanti I.D.A.B., Ni Wayan Wisaniyasa, N.W., Widarta, I. W.R. (2019). Studi Sifat Fisik, Kimia, Fungsional, Dan Kadar Asam Sianida Tepung Kecambah Kacang Koro Pedang (Canavalia Ensiformis L.) Jurnal Ilmu dan Teknologi Pangan ISSN : 2527-8010 (ejournal). 8 (3) : 238-247
Depeng Wu, Dongmei Li, Xue Zhao, Yuhang Zhan, Weili Teng, Lijuan Qiu, Hongkun Zheng, Wenbin Li, Yingpeng Han. (2020). Identification of a candidate gene associated with isoflavone content in soybean seeds using genome-wide association and linkage mapping . The Plant Journal, Vol (104): 950–963. https://doi.org/10.1111/tpj.14972
Dwi Hudiyanti, Aditya Putri Arya, Parsaoran Siahaan And Linda Suyati. (2015). Chemical Composition And Phospholipids Content Of Indonesian Jack Bean (Canavalia Ensiformis L.). Oriental Journal Of Chemistry, www.Orientjchem. Org. Vol. 31, No. (4):Pg. 2043-2046. Http://Dx.Doi.Org/10.13005/Ojc/310423
Endah Puspitojati, Muhammad Nur Cahyanto, Yustinus Marsono and Retno Indrati. (2019). Production of Angiotensin-I-Converting Enzyme (ACE) Inhibitory Peptides during the Fermentation of Jack Bean (Canavalia ensiformis) Tempe. Pakistan Journal of Nutrition, 18: 464-470. DOI: 10.3923/pjn.2019.464.470
F.Shahidi., and Y Zhong. (2015). Measurement of Antioxidant Activity. Journal of Functional Foods, 18 : 757-781.
Finkeldey, L.; Schmitz, E.; Ellinger, S. (2021). Effect of the Intake of Isoflavones on Risk Factors of Breast Cancer—A Systematic Review of Randomized Controlled Intervention Studies. Nutrients, 13 (7), 2309. https://doi.org/10.3390/nu13072309
Ghiassi Tarzi B, Gharachorloo M, Baharinia M, Mortazavi SA. (2012). The effect of germination on phenolic content and antioxidant activity of chickpea. Iran J Pharm Res, Fall;11(4):1137-43. PMID: 24250547; PMCID: PMC3813166.
H Natsir., AW Wahab., P Budi., AR Arif., RA Arfah., SR Djakad and N Fajriani. (2019). Phytochemical and Antioxidant analysis of Methanol Extract of Moringa and Celery Leaves. Journal of Physics : Conference Series. The 3rd International Conference on Science, 1341 (2019) 032023. IOP Publishing. Doi : 10.1088/1742-6596/1341/3/032023
Hsia, S. Y., Hsiao, Y. H., Li, W. T., and Hsieh, J. F. (2016). Aggregation of Soy
Protein Isoflavone Complexes and Gel Formation Induced by Glucono-δ-Lactone in Soymilk. Scientific : 1–10. https://doi.org/10.1038/srep35718
Huang, X., Chai, W., Xu, B. (2014). Kinetic changes of nutrients and antioxidant capacities of germinated soy bean and mug bean with germination time. Food Chem ;143 : 268-276
Istiani, Y., Sri, H., Artini, P. (2015). “Karakterisasi Senyawa Bioaktif Isoflavon dan Uji Aktivitas Antioksidan dari Ekstrak Etanol Tempe Berbahan Baku Koro Pedang(Canavaliaensiformis)”. Biofarmasi, 13 (2)
Kuryłowicz A. (2020). The Role of Isoflavones in Type 2 Diabetes Prevention and Treatment-A Narrative Review. Int J Mol Sci, Dec 28;22(1):218. doi: 10.3390/ijms22010218. PMID: 33379327
Kanetro B., Riyanto M., Pujimulyani D., and Huda N. (2021). Improvement of Functional Properties of Jack Bean (Canavaliaensiformis) Flour by Germination and Its Relation to Amino Acids Profile. Current Research in Nutrition and Food Science. Vol. 09, No. (3) 2021, Pg. 812-822
Made A., Yunita, S.M., and Christofora, H.W. (2018). Potential of Bioactive Components in Tempe For The Treatment of Obesity. J.Gizi Pangan, 13(2) : 79-86. https://doi:10.25182/jgp.2018.13.2.79-86
Mariah, B.R.S., Rodrigo , S.L., Marcelo, A. And Elza I. (2020). Germination conditions influence the physical characteristics, isoflavones, and vitamin C of soybean sprouts. Pesq. Agropec, bras., Brasília, v.55, e01409.DOI: 10.1590/S1678- 3921.pab2020.v55.01409
Mas Athira Johari and Heng Yen Khong. (2019). Total Phenolic Content And Antioxidant And Antibacterial Activities Of Pereskia Bleo. Faculty of Applied Sciences, Universiti Teknologi MARA, 94300 Kota Samarahan, Sarawak, Malaysia Hindawi. Advances in Pharmacological Sciences, 1-4 pages. https://doi.org/10.1155/2019/7428593
Min-Ah Kim and Mi-Ja Kim. (2020). Isoflavone profiles and antioxidant properties in different parts of soybean sprout . J Food Sci. Mar;85(3):689-695. DOI: 10.1111/1750-3841.15058
Mulia Irwan, Ermi Girsang, Ali Napiah Nasution, I Nyoman Ehrich Lister, Annisa Amalia, Wahyu Widowati. (2020). Antioxidant Activities of Black Soybean Extract (Glycine max (L.) Merr.) and Daidzein as Hydroxyl and Nitric Oxide Scavengers. Majalah Kedokteran Bandung, Volume 52 No. 2, June. https://doi.org/10.15395/mkb.v52n2.1816
Paramita Basu, Camelia Maier. (2018). Phytoestrogens and breast cancer: In vitro anticancer activities of isoflavones, lignans, coumestans, stilbenes and their analogs and derivatives. Biomedicine & Pharmacotherapy, Volume 107, Pages 1648-1666. https://doi.org/10.1016/j.biopha.2018.08.100.
Prasad, S., Phromnoi, K., Yadav, V. R., Chaturvedi, M. M., & Aggarwal, B. B. (2010). Targeting inflammatory pathways by flavonoids for prevention and treatment of cancer. Planta medica, 76(11), 1044-1063.
Ribeiro, M.L.L. & Mandarino, José & Carrão-Panizzi, Mercedes & Neves De Oliveira, Maria & CAMPO, C.B.H. & Nepomuceno, Alexandre & Ida, Elza. (2006). β-Glucosidase activity and isoflavone content in germinated soybean radicles and cotyledons. Journal of Food Biochemistry, 30. 453 - 465. DOI:10.1111/j.1745-4514.2006.00075.x
Rigo AA, Dahmer AM, Steffens C, Steffens J, Carrao-Panizzi. (2015). Charaqcterization of Soybean cultivar genetically improved for humanconsumption. Int J Fppd Eng, 1(1) : 1-7, DOI : 10.18178/ijfe.1.1.1-7
STIH ITB. (2018). Pedoman Pengujian Isoflavon Meode HPLC.
Vadivel, V. & Cheong, J. & Biesalski, Hans. (2012). Antioxidant and type II diabetes related enzyme inhibition properties of methanolic extract of an underutilized food legume, Canavalia ensiformis (L.) DC: Effect of traditional processing methods. LWT - Food Science and Technology, 47. 255–260.DOI : 10.1016/j.lwt.2012.01.014.
Wang, G., S.S. Kuan, O.J. Francis, G.M. Ware, A.S. Carman.(1990). A simplified HPLC method for the determination of phytoestrogen in soybean and its processed product. Journal of Agricultural and Food Chemistry, Vol: 38.No. 1:185–190
Wei, Y., Lv, J., Guo, Y. et al. (2020). Soy intake and breast cancer risk: a prospective study of 300,000 Chinese women and a dose–response meta-analysis. Eur J Epidemiol 35, 567–578. https://doi.org/10.1007/s10654-019-00585-4
Winarsi, H. Isoflavon. Yogyakarta: Gadjah mada University Press ; 2005.
Xu B, Chang SK. (2008).Total phenolics, phenolic acids, isoflavones, and anthocyanins and antioxidant properties of yellow and black soybeans as affected by thermal processing. J Agric Food Chem, Aug 27;56(16):7165-75. doi: 10.1021/jf8012234. Epub 2008 Aug 5. PMID: 18680298
Yoshiara, L.Y, Mandarino, J.M.G, Carrão-Panizzi, M.C., Madeira, T.B, da Silva, J.B., de Camargo, A.C, Shahidi, F., and Ida, E.I. (2018).Germination changes the isoflavone profile and increases the antioxidant potential of soybean. J. Food Bioact, 3: 144–150
Yu Lin, H. Kuo, Y.H. Lin, Y.L. & Chiang,W. (2009). Antioxidative Effect And Active Components From Leaves Of Lotus (Nelumbo nucifera). Journal Of Agricultural And Food Chemistry, 57. 6623–6629
Yu-Hsuan Hsiao, Chi-Tang Ho, Min-Hsiung Pan. (2020). Bioavailability and health benefits of major isoflavone aglycones and their metabolites. Journal of Functional Foods, Volume 74. 104164. https://doi.org/10.1016/j.jff.2020.104164.
Zhang HY, Cui J, Zhang Y, Wang ZL, Chong T, Wang ZM. (2016). Isoflavones and Prostate Cancer: A Review of Some Critical Issues. Chin Med J (Engl), Feb 5;129(3):341-7. doi: 10.4103/0366-6999.174488. PMID: 26831238; PMCID: PMC4799580.
Published
2023-09-04
How to Cite
Tsalissavrina, I., Murdiati, A., Raharjo, S., & Lestari, L. A. (2023). The Effects of Duration of Fermentation on Total Phenolic Content, Antioxidant Activity, and Isoflavones of The Germinated Jack Bean Tempeh (Canavalia Ensiformis). Indonesian Journal of Pharmacy, 34(3), 460–470. https://doi.org/10.22146/ijp.6658
Section
Research Article

Most read articles by the same author(s)