Erratum: Addendum to "The Effects of Duration of Fermentation on Total Phenolic Content, Antioxidant Activity, and Isoflavones of the Germinated Jack Bean Tempeh (Canavalia ensiformis)" that was published in Indonesian Journal of Pharmacy (Volume 34 No.3)
Keywords:
Erratum, Addendum
Abstract
The original version of this article did not include the complete affiliation details. The following addition has been made to the first author's affiliation: “Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Jl. Flora, Bulaksumur, Sleman, DI Yogyakarta 55281, Indonesia.”. © 2025 The Authors
References
BPS. (2021). Rata-rata Konsumsi Tahu dan Tempe per Kapita (2010-2021). https://dataindonesia.id/sektor-riil/detail/konsumsi-tahu-dan-tempe-per-kapita-di-indonesia-naik-pada-2021
Andriati, N., Anggrahini, S., Setyaningsih, W., Sofiana, I., Pusparasi, D. A., & Mossberg, F. (2018). Physicochemical characterization of jack bean (Canavalia ensiformis) tempeh. Food Research, 2(5), 481–485. https://doi.org/10.26656/fr.2017.2(5).300
Astawan, M., Mardhiyyah, Y. S., & Wijaya, C. H. (2018). Potential of Bioactive Components in Tempe for the Treatment of Obesity. Jurnal Gizi Dan Pangan, 13(2), 79–86. https://doi.org/10.25182/jgp.2018.13.2.79-86
Astawan, M., Wresdiyati, T., & Ichsan, M. (2016). Physicochemical Characteristics of Germinated Soybean Flour. Jurnal Pangan, 25(2), 105–112.
Ayyash, M., Johnson, S. K., Liu, S.-Q., Al-Mheiri, A., & Abushelaibi, A. (2018). Cytotoxicity, antihypertensive, antidiabetic and antioxidant activities of solid-state fermented lupin, quinoa and wheat by Bifidobacterium species: In-vitro investigations. LWT, 95, 295–302. https://doi.org/https://doi.org/10.1016/j.lwt.2018.04.099
Barz, W., Ang, G. B., & Papendorf, P. (1991). Metabolism of isoflavones and formation of factor-2 by tempeh producing microorganism Tempeh Workshop.
Basu, P., & Maier, C. (2018). Phytoestrogens and breast cancer: In vitro anticancer activities of isoflavones, lignans, coumestans, stilbenes and their analogs and derivatives. Biomedicine and Pharmacotherapy, 107(August), 1648–1666. https://doi.org/10.1016/j.biopha.2018.08.100
Boutas, I., Kontogeorgi, A., Dimitrakakis, C., & Kalantaridou, S. N. (2022). Soy Isoflavones and Breast Cancer Risk: A Meta-analysis. In Vivo, 36(2), 556–562. https://doi.org/10.21873/INVIVO.12737
Damayanti, I. D. A. B., Wisaniyasa, N. W., & Widarta, I. W. R. (2019). Study of Physical, Chemical, Functional Properties, and Hydrogen Cyanide Content of Jack Bean Sprout (Canavalia ensiformis L.) Flour. Jurnal Ilmu Dan Teknologi Pangan (ITEPA), 8(3), 238–247. https://doi.org/10.24843/itepa.2019.v08.i03.p02
Finkeldey, L., Schmitz, E., & Ellinger, S. (2021). Effect of the intake of isoflavones on risk factors of breast cancer—a systematic review of randomized controlled intervention studies. Nutrients, 13(7), 1–32. https://doi.org/10.3390/nu13072309
Gyorgy, P., Murata, K., & Ikehata, H. (1964). Antioxidants isolated from Fermented Soybeans (Tempeh). Nature, 203(4947), 870–872. https://doi.org/10.1038/203870a0
Hsia, S. Y., Hsiao, Y. H., Li, W. T., & Hsieh, J. F. (2016). Aggregation of soy protein-isoflavone complexes and gel formation induced by glucono-Î-lactone in soymilk. Scientific Reports, 6(May), 1–10. https://doi.org/10.1038/srep35718
Hsiao, Y. H., Ho, C. T., & Pan, M. H. (2020). Bioavailability and health benefits of major isoflavone aglycones and their metabolites. Journal of Functional Foods, 74(June), 1–9. https://doi.org/10.1016/j.jff.2020.104164
Huang, X., Cai, W., & Xu, B. (2014). Kinetic changes of nutrients and antioxidant capacities of germinated soybean (glycine max l.) and mung bean (vigna radiata l.) with germination time. Food Chemistry, 143, 268–276. https://doi.org/10.1016/j.foodchem.2013.07.080
Hudiyanti, D., Arya, A. P., Siahaan, P., & Suyati, L. (2015). Chemical composition and phospholipids content of Indonesian Jack Bean (Canavalia ensiformis L.). Oriental Journal of Chemistry, 31(4), 2043–2046. https://doi.org/10.13005/ojc/310423
Hur, S. J., Lee, S. Y., Kim, Y.-C., Choi, I., & Kim, G.-B. (2014). Effect of fermentation on the antioxidant activity in plant-based foods. Food Chemistry, 160, 346–356. https://doi.org/https://doi.org/10.1016/j.foodchem.2014.03.112
Irwan, M., Girsang, E., Nasution, A. N., Lister, I. N. E., Amalia, A., & Widowati, W. (2020). Antioxidant Activities of Black Soybean Extract (Glycine max (L.) Merr.) and Daidzein as Hydroxyl and Nitric Oxide Scavengers. Majalah Kedokteran Bandung, 52(2), 74–80. https://doi.org/10.15395/mkb.v52n2.1816
Istiani, Y., Handajani, S., & Pangastuti, A. (2015). The characteristics of the bioactive compounds of isoflavone and study of antioxidant activity of the ethanol extract of tempeh made of jack bean (Canavalia ensiformis). Biofarmasi, 13(2), 50–58. https://doi.org/10.13057/biofar/f130202
SITH ITB. (2018). Pedoman Pengujian Isoflavon Meode HPLC. SITH ITB.
Johari, M. A., & Khong, H. Y. (2019). Total Phenolic Content and Antioxidant and Antibacterial Activities of Pereskia bleo. Advances in Pharmacological Sciences, 1–4.
Kanetro, B., Riyanto, M., Pujimulyani, D., & Huda, N. (2021). Improvement of Functional Properties of Jack Bean (Canavalia ensiformis) Flour by Germination and Its Relation to Amino Acids Profile. Current Research in Nutrition and Food Science, 9(3), 812–822. https://doi.org/10.12944/CRNFSJ.9.3.09
Kim, M. A., & Kim, M. J. (2020). Isoflavone profiles and antioxidant properties in different parts of soybean sprout. Journal of Food Science, 85(3), 689–695. https://doi.org/10.1111/1750-3841.15058
Kuryłowicz, A. (2021). The role of isoflavones in type 2 diabetes prevention and treatment—A narrative review. International Journal of Molecular Sciences, 22(1), 1–31. https://doi.org/10.3390/ijms22010218
Lin, H.-Y., Kuo, Y.-H., Lin, Y.-L., & Chiang, W. (2009). Antioxidative Effect and Active Components from Leaves of Lotus (Nelumbo nucifera). Journal of Agricultural and Food Chemistry, 57(15), 6623–6629. https://doi.org/10.1021/jf900950z
Natsir, H., Wahab, A. W., Budi, P., Arif, A. R., Arfah, R. A., Djakad, S. R., & Fajriani, N. (2019). Phytochemical and Antioxidant Analysis of Methanol Extract of Moringa and Celery Leaves. Journal of Physics: Conference Series, 1341(3), 1–6. https://doi.org/10.1088/1742-6596/1341/3/032023
Prasad, S., Phromnoi, K., Yadav, V. R., Chaturvedi, M. M., & Aggarwal, B. B. (2010). Targeting Inflammatory Pathways by Flavonoids for Prevention and Treatment of Cancer. Planta Medica, 76(11), 1044–1063. https://doi.org/10.1201/b10852-26
Puspitasari, A., Made, A., & Tutik, W. (2020). The Effect of Soybeans Germination on Proximate Composition and Isoflavones Bioactive Components of Fresh and Semangit Tempe. Jurnal Pangan, 29(1), 35–44.
Puspitojati, E., Cahyanto, M. N., Marsono, Y., & Indrati, R. (2019). Production of Angiotensin-I-Converting Enzyme (ACE) Inhibitory Peptides during the Fermentation of Jack Bean (Canavalia ensiformis) Tempe. Pakistan Journal of Nutrition, 18(5), 464–470. https://doi.org/10.3923/pjn.2019.464.470
Ribeiro, M. L. L., Mandarino, J. M. G., Carrão-Panizzi, M. C., Oliveira, M. C. N., Campo, C. B. H., Nepomuceno, A. L., & Ida, E. I. (2006). β-Glucosidase activity and isoflavone content in germinated soybean radicles and cotyledons. Journal of Food Biochemistry, 30(4), 453–465. https://doi.org/10.1111/j.1745-4514.2006.00075.x
Rigo, A. A., Dahmer, A. M., Steffens, C., & Steffens, J. (2015). Characterization of Soybean Cultivars Genetically Improved for Human Consumption. International Journal of Food Engineering, 1(1), 1–7. https://doi.org/10.18178/ijfe.1.1.1-7
Romulo, A., & Surya, R. (2021). Tempe: A traditional fermented food of Indonesia and its health benefits. International Journal of Gastronomy and Food Science, 26(December 2021), 1–9. https://doi.org/10.1016/j.ijgfs.2021.100413
Salar, R. K., Certik, M., & Brezova, V. (2012). Modulation of phenolic content and antioxidant activity of maize by solid state fermentation with thamnidium elegans CCF 1456. Biotechnology and Bioprocess Engineering, 17(1), 109–116. https://doi.org/10.1007/s12257-011-0455-2
Shahidi, F., & Zhong, Y. (2015). Measurement of antioxidant activity. Journal of Functional Foods, 18, 757–781. https://doi.org/10.1016/j.jff.2015.01.047
Silva, M. B. R., Leite, R. S., de Oliveira, M. Á., & Ida, E. I. (2020). Germination conditions influence the physical characteristics, isoflavones, and vitamin C of soybean sprouts. Pesquisa Agropecuaria Brasileira, 55, 1–9. https://doi.org/10.1590/S1678-3921.PAB2020.V55.01409
Tarzi, B. G., Gharachorloo, M., Baharinia, M., & Mortazavi, A. (2012). The effect of Germination on phenolic content and antioxidant activity of chickpea. Iranian Journal of Pharmaceutical Research, 11(4), 1137–1143.
Utami, R., Wijaya, C. H., & Lioe, H. N. (2016). Taste of Water-Soluble Extracts Obtained from Over-Fermented Tempe. International Journal of Food Properties, 19(9), 2063–2073. https://doi.org/10.1080/10942912.2015.1104509
Vadivel, V., Cheong, J. N., & Biesalski, H. K. (2012). Antioxidant and type II diabetes related enzyme inhibition properties of methanolic extract of an underutilized food legume, Canavalia ensiformis (L.) DC: Effect of traditional processing methods. Lwt - Food Science and Technology, 47(2), 255–260. https://doi.org/10.1016/j.lwt.2012.01.014
Wang, G., Kuan, S. S., Francis, O. J., Ware, G. M., & Carman, A. S. (1990). A simplified HPLC method for the determination of phytoestrogens in soybean and its processed products. Journal of Agricultural and Food Chemistry, 38(1), 185–190. https://doi.org/10.1021/jf00091a041
Wei, Y., Lv, J., Guo, Y., Bian, Z., Gao, M., Du, H., Yang, L., Chen, Y., Zhang, X., Wang, T., Chen, J., Chen, Z., Yu, C., Huo, D., Li, L., Chen, J., Chen (PI), Z., Clarke, R., Collins, R., … Qiu, Z. (2020). Soy intake and breast cancer risk: a prospective study of 300,000 Chinese women and a dose–response meta-analysis. European Journal of Epidemiology, 35(6), 567–578. https://doi.org/10.1007/s10654-019-00585-4
Winarsi, H. (2005). Isoflavon. Gadjah mada University Press.
Wu, D., Li, D., Zhao, X., Zhan, Y., Teng, W., Qiu, L., Zheng, H., Li, W., & Han, Y. (2020). Identification of a candidate gene associated with isoflavone content in soybean seeds using genome-wide association and linkage mapping. Plant Journal, 104(4), 950–963. https://doi.org/10.1111/tpj.14972
Xu, B., & Chang, S. K. C. (2008). Total Phenolics, Phenolic Acids, Isoflavones, and Anthocyanins and Antioxidant Properties of Yellow and Black Soybeans As Affected by Thermal Processing. Journal of Agricultural and Food Chemistry, 56(16), 7165–7175. https://doi.org/10.1021/jf8012234
Yoon, G. A., & Park, S. (2014). Antioxidant action of soy isoflavones on oxidative stress and antioxidant enzyme activities in exercised rats. Nutrition Research and Practice, 8(6), 618–624. https://doi.org/10.4162/nrp.2014.8.6.618
Yoshiara, L. Y., Mandarino, J. M. G., Carrão-Panizzi, M. C., Madeira, T. B., Silva, J. B. da, Camargo, A. C. de, Shahidi, F., & Ida, E. I. (2018). Germination changes the isoflavone profile and increases the antioxidant potential of soybean. Journal of Food Bioactives, 3, 144–150. https://doi.org/10.31665/jfb.2018.3157
Zhang, H. Y., Cui, J., Zhang, Y., Wang, Z. L., Chong, T., & Wang, Z. M. (2016). Isoflavones and prostate cancer: A review of some critical issues. Chinese Medical Journal, 129(3), 341–347. https://doi.org/10.4103/0366-6999.174488
Andriati, N., Anggrahini, S., Setyaningsih, W., Sofiana, I., Pusparasi, D. A., & Mossberg, F. (2018). Physicochemical characterization of jack bean (Canavalia ensiformis) tempeh. Food Research, 2(5), 481–485. https://doi.org/10.26656/fr.2017.2(5).300
Astawan, M., Mardhiyyah, Y. S., & Wijaya, C. H. (2018). Potential of Bioactive Components in Tempe for the Treatment of Obesity. Jurnal Gizi Dan Pangan, 13(2), 79–86. https://doi.org/10.25182/jgp.2018.13.2.79-86
Astawan, M., Wresdiyati, T., & Ichsan, M. (2016). Physicochemical Characteristics of Germinated Soybean Flour. Jurnal Pangan, 25(2), 105–112.
Ayyash, M., Johnson, S. K., Liu, S.-Q., Al-Mheiri, A., & Abushelaibi, A. (2018). Cytotoxicity, antihypertensive, antidiabetic and antioxidant activities of solid-state fermented lupin, quinoa and wheat by Bifidobacterium species: In-vitro investigations. LWT, 95, 295–302. https://doi.org/https://doi.org/10.1016/j.lwt.2018.04.099
Barz, W., Ang, G. B., & Papendorf, P. (1991). Metabolism of isoflavones and formation of factor-2 by tempeh producing microorganism Tempeh Workshop.
Basu, P., & Maier, C. (2018). Phytoestrogens and breast cancer: In vitro anticancer activities of isoflavones, lignans, coumestans, stilbenes and their analogs and derivatives. Biomedicine and Pharmacotherapy, 107(August), 1648–1666. https://doi.org/10.1016/j.biopha.2018.08.100
Boutas, I., Kontogeorgi, A., Dimitrakakis, C., & Kalantaridou, S. N. (2022). Soy Isoflavones and Breast Cancer Risk: A Meta-analysis. In Vivo, 36(2), 556–562. https://doi.org/10.21873/INVIVO.12737
Damayanti, I. D. A. B., Wisaniyasa, N. W., & Widarta, I. W. R. (2019). Study of Physical, Chemical, Functional Properties, and Hydrogen Cyanide Content of Jack Bean Sprout (Canavalia ensiformis L.) Flour. Jurnal Ilmu Dan Teknologi Pangan (ITEPA), 8(3), 238–247. https://doi.org/10.24843/itepa.2019.v08.i03.p02
Finkeldey, L., Schmitz, E., & Ellinger, S. (2021). Effect of the intake of isoflavones on risk factors of breast cancer—a systematic review of randomized controlled intervention studies. Nutrients, 13(7), 1–32. https://doi.org/10.3390/nu13072309
Gyorgy, P., Murata, K., & Ikehata, H. (1964). Antioxidants isolated from Fermented Soybeans (Tempeh). Nature, 203(4947), 870–872. https://doi.org/10.1038/203870a0
Hsia, S. Y., Hsiao, Y. H., Li, W. T., & Hsieh, J. F. (2016). Aggregation of soy protein-isoflavone complexes and gel formation induced by glucono-Î-lactone in soymilk. Scientific Reports, 6(May), 1–10. https://doi.org/10.1038/srep35718
Hsiao, Y. H., Ho, C. T., & Pan, M. H. (2020). Bioavailability and health benefits of major isoflavone aglycones and their metabolites. Journal of Functional Foods, 74(June), 1–9. https://doi.org/10.1016/j.jff.2020.104164
Huang, X., Cai, W., & Xu, B. (2014). Kinetic changes of nutrients and antioxidant capacities of germinated soybean (glycine max l.) and mung bean (vigna radiata l.) with germination time. Food Chemistry, 143, 268–276. https://doi.org/10.1016/j.foodchem.2013.07.080
Hudiyanti, D., Arya, A. P., Siahaan, P., & Suyati, L. (2015). Chemical composition and phospholipids content of Indonesian Jack Bean (Canavalia ensiformis L.). Oriental Journal of Chemistry, 31(4), 2043–2046. https://doi.org/10.13005/ojc/310423
Hur, S. J., Lee, S. Y., Kim, Y.-C., Choi, I., & Kim, G.-B. (2014). Effect of fermentation on the antioxidant activity in plant-based foods. Food Chemistry, 160, 346–356. https://doi.org/https://doi.org/10.1016/j.foodchem.2014.03.112
Irwan, M., Girsang, E., Nasution, A. N., Lister, I. N. E., Amalia, A., & Widowati, W. (2020). Antioxidant Activities of Black Soybean Extract (Glycine max (L.) Merr.) and Daidzein as Hydroxyl and Nitric Oxide Scavengers. Majalah Kedokteran Bandung, 52(2), 74–80. https://doi.org/10.15395/mkb.v52n2.1816
Istiani, Y., Handajani, S., & Pangastuti, A. (2015). The characteristics of the bioactive compounds of isoflavone and study of antioxidant activity of the ethanol extract of tempeh made of jack bean (Canavalia ensiformis). Biofarmasi, 13(2), 50–58. https://doi.org/10.13057/biofar/f130202
SITH ITB. (2018). Pedoman Pengujian Isoflavon Meode HPLC. SITH ITB.
Johari, M. A., & Khong, H. Y. (2019). Total Phenolic Content and Antioxidant and Antibacterial Activities of Pereskia bleo. Advances in Pharmacological Sciences, 1–4.
Kanetro, B., Riyanto, M., Pujimulyani, D., & Huda, N. (2021). Improvement of Functional Properties of Jack Bean (Canavalia ensiformis) Flour by Germination and Its Relation to Amino Acids Profile. Current Research in Nutrition and Food Science, 9(3), 812–822. https://doi.org/10.12944/CRNFSJ.9.3.09
Kim, M. A., & Kim, M. J. (2020). Isoflavone profiles and antioxidant properties in different parts of soybean sprout. Journal of Food Science, 85(3), 689–695. https://doi.org/10.1111/1750-3841.15058
Kuryłowicz, A. (2021). The role of isoflavones in type 2 diabetes prevention and treatment—A narrative review. International Journal of Molecular Sciences, 22(1), 1–31. https://doi.org/10.3390/ijms22010218
Lin, H.-Y., Kuo, Y.-H., Lin, Y.-L., & Chiang, W. (2009). Antioxidative Effect and Active Components from Leaves of Lotus (Nelumbo nucifera). Journal of Agricultural and Food Chemistry, 57(15), 6623–6629. https://doi.org/10.1021/jf900950z
Natsir, H., Wahab, A. W., Budi, P., Arif, A. R., Arfah, R. A., Djakad, S. R., & Fajriani, N. (2019). Phytochemical and Antioxidant Analysis of Methanol Extract of Moringa and Celery Leaves. Journal of Physics: Conference Series, 1341(3), 1–6. https://doi.org/10.1088/1742-6596/1341/3/032023
Prasad, S., Phromnoi, K., Yadav, V. R., Chaturvedi, M. M., & Aggarwal, B. B. (2010). Targeting Inflammatory Pathways by Flavonoids for Prevention and Treatment of Cancer. Planta Medica, 76(11), 1044–1063. https://doi.org/10.1201/b10852-26
Puspitasari, A., Made, A., & Tutik, W. (2020). The Effect of Soybeans Germination on Proximate Composition and Isoflavones Bioactive Components of Fresh and Semangit Tempe. Jurnal Pangan, 29(1), 35–44.
Puspitojati, E., Cahyanto, M. N., Marsono, Y., & Indrati, R. (2019). Production of Angiotensin-I-Converting Enzyme (ACE) Inhibitory Peptides during the Fermentation of Jack Bean (Canavalia ensiformis) Tempe. Pakistan Journal of Nutrition, 18(5), 464–470. https://doi.org/10.3923/pjn.2019.464.470
Ribeiro, M. L. L., Mandarino, J. M. G., Carrão-Panizzi, M. C., Oliveira, M. C. N., Campo, C. B. H., Nepomuceno, A. L., & Ida, E. I. (2006). β-Glucosidase activity and isoflavone content in germinated soybean radicles and cotyledons. Journal of Food Biochemistry, 30(4), 453–465. https://doi.org/10.1111/j.1745-4514.2006.00075.x
Rigo, A. A., Dahmer, A. M., Steffens, C., & Steffens, J. (2015). Characterization of Soybean Cultivars Genetically Improved for Human Consumption. International Journal of Food Engineering, 1(1), 1–7. https://doi.org/10.18178/ijfe.1.1.1-7
Romulo, A., & Surya, R. (2021). Tempe: A traditional fermented food of Indonesia and its health benefits. International Journal of Gastronomy and Food Science, 26(December 2021), 1–9. https://doi.org/10.1016/j.ijgfs.2021.100413
Salar, R. K., Certik, M., & Brezova, V. (2012). Modulation of phenolic content and antioxidant activity of maize by solid state fermentation with thamnidium elegans CCF 1456. Biotechnology and Bioprocess Engineering, 17(1), 109–116. https://doi.org/10.1007/s12257-011-0455-2
Shahidi, F., & Zhong, Y. (2015). Measurement of antioxidant activity. Journal of Functional Foods, 18, 757–781. https://doi.org/10.1016/j.jff.2015.01.047
Silva, M. B. R., Leite, R. S., de Oliveira, M. Á., & Ida, E. I. (2020). Germination conditions influence the physical characteristics, isoflavones, and vitamin C of soybean sprouts. Pesquisa Agropecuaria Brasileira, 55, 1–9. https://doi.org/10.1590/S1678-3921.PAB2020.V55.01409
Tarzi, B. G., Gharachorloo, M., Baharinia, M., & Mortazavi, A. (2012). The effect of Germination on phenolic content and antioxidant activity of chickpea. Iranian Journal of Pharmaceutical Research, 11(4), 1137–1143.
Utami, R., Wijaya, C. H., & Lioe, H. N. (2016). Taste of Water-Soluble Extracts Obtained from Over-Fermented Tempe. International Journal of Food Properties, 19(9), 2063–2073. https://doi.org/10.1080/10942912.2015.1104509
Vadivel, V., Cheong, J. N., & Biesalski, H. K. (2012). Antioxidant and type II diabetes related enzyme inhibition properties of methanolic extract of an underutilized food legume, Canavalia ensiformis (L.) DC: Effect of traditional processing methods. Lwt - Food Science and Technology, 47(2), 255–260. https://doi.org/10.1016/j.lwt.2012.01.014
Wang, G., Kuan, S. S., Francis, O. J., Ware, G. M., & Carman, A. S. (1990). A simplified HPLC method for the determination of phytoestrogens in soybean and its processed products. Journal of Agricultural and Food Chemistry, 38(1), 185–190. https://doi.org/10.1021/jf00091a041
Wei, Y., Lv, J., Guo, Y., Bian, Z., Gao, M., Du, H., Yang, L., Chen, Y., Zhang, X., Wang, T., Chen, J., Chen, Z., Yu, C., Huo, D., Li, L., Chen, J., Chen (PI), Z., Clarke, R., Collins, R., … Qiu, Z. (2020). Soy intake and breast cancer risk: a prospective study of 300,000 Chinese women and a dose–response meta-analysis. European Journal of Epidemiology, 35(6), 567–578. https://doi.org/10.1007/s10654-019-00585-4
Winarsi, H. (2005). Isoflavon. Gadjah mada University Press.
Wu, D., Li, D., Zhao, X., Zhan, Y., Teng, W., Qiu, L., Zheng, H., Li, W., & Han, Y. (2020). Identification of a candidate gene associated with isoflavone content in soybean seeds using genome-wide association and linkage mapping. Plant Journal, 104(4), 950–963. https://doi.org/10.1111/tpj.14972
Xu, B., & Chang, S. K. C. (2008). Total Phenolics, Phenolic Acids, Isoflavones, and Anthocyanins and Antioxidant Properties of Yellow and Black Soybeans As Affected by Thermal Processing. Journal of Agricultural and Food Chemistry, 56(16), 7165–7175. https://doi.org/10.1021/jf8012234
Yoon, G. A., & Park, S. (2014). Antioxidant action of soy isoflavones on oxidative stress and antioxidant enzyme activities in exercised rats. Nutrition Research and Practice, 8(6), 618–624. https://doi.org/10.4162/nrp.2014.8.6.618
Yoshiara, L. Y., Mandarino, J. M. G., Carrão-Panizzi, M. C., Madeira, T. B., Silva, J. B. da, Camargo, A. C. de, Shahidi, F., & Ida, E. I. (2018). Germination changes the isoflavone profile and increases the antioxidant potential of soybean. Journal of Food Bioactives, 3, 144–150. https://doi.org/10.31665/jfb.2018.3157
Zhang, H. Y., Cui, J., Zhang, Y., Wang, Z. L., Chong, T., & Wang, Z. M. (2016). Isoflavones and prostate cancer: A review of some critical issues. Chinese Medical Journal, 129(3), 341–347. https://doi.org/10.4103/0366-6999.174488
Published
2025-06-19
How to Cite
Tsalissavrina, I., Murdiati, A., Raharjo, S., & Lestari, L. A. (2025). Erratum: Addendum to "The Effects of Duration of Fermentation on Total Phenolic Content, Antioxidant Activity, and Isoflavones of the Germinated Jack Bean Tempeh (Canavalia ensiformis)" that was published in Indonesian Journal of Pharmacy (Volume 34 No.3). Indonesian Journal of Pharmacy, 36(2). https://doi.org/10.22146/ijp.20614
Section
Research Article