Exploring Marine Invertebrate-Associated Bacteria for Novel Antibiotics: Isolation, Activity Screening, and Potential Bioactive Compounds
Abstract
Marine bacteria associated with marine invertebrates are an interesting source to find compounds with potential bioactivities due to their ability to survive along with their host through evolution. Recent studies also found that secondary metabolites that previously isolated from marine invertebrates such as bryostatins were produced by the bacterial symbionts. Therefore, we screened bacteria from various marine invertebrates in Pulau Pari, Kepulauan Seribu, Jakarta for their antibacterial activities. The aim of this study to obtain potential bacterial strains that produce novel antibiotics. Isolation of bacteria from 16 marine invertebrates were accomplished using media Marine Agar, ISP2, YMA, and MS. We picked 97 bacterial strains for the testing of antibacterial activity against Mycobacterium smegmatis, Staphylococcus aureus, Eschericia coli, Pseudomonas aeruginosa, and Bacillus subtilis. The result showed that 19 of the bacterial strains showed activity against at least one of the test bacteria. One of the strains exhibited potent antibacterial activity against M. smegmatis. Partial identification using 16S rRNA revealed that the strains has 99.58% sequence similarity to Micrococcus luteus NCTC 2665T. Chemical analysis using GC-MS showed 9,12- Octadecadienoic acid, methyl ester; 9,12-Octadecadienoic acid (Z,Z); Octadecanoic acid; 2-(Dimethylamino)ethyl vaccenoate; and Cyclopropane,1,1-dichloro-2,2,3,3-tetramethyl- were major compounds with putative antibacterial activity. The results of this study emphasize the prospect of targeting this strain for further exploration to isolate and to characterize novel antibiotics from marine bacteria.
References
Abou-Elela, G. M., Abd-Elnaby, H., Ibrahim, H. A. H., & Okbah, M. A. (2009). Marine Natural Products and Their Potential Applications as Anti-Infective Agents. World Applied Sciences Journal, 7(7), 872–880.
Bultel-Poncé, V., Debitus, C., Berge, J.-P., Cerceau, C., & Guyot, M. (1998). Metabolites from the sponge-associated bacterium Micrococcus luteus. Journal of Marine Biotechnology, 6(4), 233–236.
Burgess, J. G. (2012). New and emerging analytical techniques for marine biotechnology. Current Opinion in Biotechnology, 23(1), 29–33.
Devi, P., Wahidullah, S., Rodrigues, C., & Souza, L. D. (2010). The sponge-associated bacterium Bacillus licheniformis SAB1: a source of antimicrobial compounds. Marine Drugs, 8(4), 1203–1212.
Dewi, A. S., Tarman, K., & Uria, A. R. (2008). Marine natural products: Prospects and impacts on the sustainable development in Indonesia. Proceedings of the Indonesian Students’ Scientific Meeting, Delft, The Netherlands, 13–15.
El Samak, M., Solyman, S. M., & Hanora, A. (2018). Antimicrobial activity of bacteria isolated from Red Sea marine invertebrates. Biotechnology Reports, 19, e00275.
El-Hossary, E. M., Cheng, C., Hamed, M. M., Hamed, A. N. E.-S., Ohlsen, K., Hentschel, U., & Abdelmohsen, U. R. (2017). Antifungal potential of marine natural products. European Journal of Medicinal Chemistry, 126, 631–651.
Khan, I. H., & Javaid, A. (2022). DNA cleavage of the fungal pathogen and production of antifungal compounds are the possible mechanisms of action of biocontrol agent Penicillium italicum against Macrophomina phaseolina. Mycologia, 114(1), 24–34.
Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120.
Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870–1874.
Liu, C., Tang, X., Li, P., & Li, G. (2012). Suberitine A–D, four new cytotoxic dimeric aaptamine alkaloids from the marine sponge Aaptos suberitoides. Organic Letters, 14(8), 1994–1997.
Liu, M., El-Hossary, E. M., Oelschlaeger, T. A., Donia, M. S., Quinn, R. J., & Abdelmohsen, U. R. (2019). Potential of marine natural products against drug-resistant bacterial infections. The Lancet Infectious Diseases, 19(7), e237–e245.
Martins, A., Vieira, H., Gaspar, H., & Santos, S. (2014). Marketed marine natural products in the pharmaceutical and cosmeceutical industries: Tips for success. Marine Drugs, 12(2), 1066–1101.
Mohanrasu, K., Rao, R. G. R., Dinesh, G. H., Zhang, K., Sudhakar, M., Pugazhendhi, A., Jeyakanthan, J., Ponnuchamy, K., Govarthanan, M., & Arun, A. (2021). Production and characterization of biodegradable polyhydroxybutyrate by Micrococcus luteus isolated from marine environment. International Journal of Biological Macromolecules, 186, 125–134.
Nadar, V. M., Manivannan, S., Chinnaiyan, R., Govarthanan, M., & Ponnuchamy, K. (2022). Review on marine sponge alkaloid, aaptamine: A potential antibacterial and anticancer drug. Chemical Biology & Drug Design, 99(1), 103–110.
Nisha, P., John, N., Mamatha, C., & Thomas, M. (2020). Characterization of bioactive compound produced by microfouling actinobacteria (Micrococcus luteus) isolated from the ship hull in Arabian Sea, Cochin. Kerala. Materials Today: Proceedings, 25, 257–264.
Parsons, J. B., Yao, J., Frank, M. W., Jackson, P., & Rock, C. O. (2012). Membrane disruption by antimicrobial fatty acids releases low-molecular-weight proteins from Staphylococcus aureus. In Journal of bacteriology (Vol. 194, Issue 19). Am Soc Microbiol.
Parthipan, B., Suky, M. G. T., & Mohan, V. R. (2015). GC-MS analysis of phytocomponents in Pleiospermium alatum (Wall. ex Wight & Arn.) Swingle,(Rutaceae). Journal of Pharmacognosy and Phytochemistry, 4(1), 216–222.
Pham, C.-D., Hartmann, R., Müller, W. E. G., De Voogd, N., Lai, D., & Proksch, P. (2013). Aaptamine derivatives from the Indonesian sponge Aaptos suberitoides. Journal of Natural Products, 76(1), 103–106.
Purgato, G. A., Lima, S., Baeta, J. V. P. B., Pizziolo, V. R., de Souza, G. N., Diaz-Muñoz, G., & Diaz, M. A. N. (2021). Salvinia auriculata: chemical profile and biological activity against Staphylococcus aureus isolated from bovine mastitis. Brazilian Journal of Microbiology, 52, 2401–2411.
Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406–425.
Santos, J. D., Vitorino, I., de la Cruz, M., Díaz, C., Cautain, B., Annang, F., Pérez-Moreno, G., Gonzalez, I., Tormo, J. R., & Martin, J. (2020). Diketopiperazines and other bioactive compounds from bacterial symbionts of marine sponges. Antonie van Leeuwenhoek, 113, 875–887.
Schinke, C., Martins, T., Queiroz, S. C. N., Melo, I. S., & Reyes, F. G. R. (2017). Antibacterial compounds from marine bacteria, 2010–2015. Journal of Natural Products, 80(4), 1215–1228.
Srinivasan, R., Kannappan, A., Shi, C., & Lin, X. (2021). Marine bacterial secondary metabolites: A treasure house for structurally unique and effective antimicrobial compounds. Marine Drugs, 19(10), 530.
Stincone, P., & Brandelli, A. (2020). Marine bacteria as source of antimicrobial compounds. Critical Reviews in Biotechnology, 40(3), 306–319.
Subramani, R., & Sipkema, D. (2019). Marine rare actinomycetes: a promising source of structurally diverse and unique novel natural products. Marine Drugs, 17(5), 249.
Tuleva, B., Christova, N., Cohen, R., Antonova, D., Todorov, T., & Stoineva, I. (2009). Isolation and characterization of trehalose tetraester biosurfactants from a soil strain Micrococcus luteus BN56. Process Biochemistry, 44(2), 135–141.
Umadevi, K., & Krishnaveni, M. (2013). Antibacterial activity of pigment produced from Micrococcus luteus KF532949. International Journal of Chemical and Analytical Science, 4(3), 149–152.
Utermann, C., Echelmeyer, V. A., Blümel, M., & Tasdemir, D. (2020). Culture-dependent microbiome of the Ciona intestinalis tunic: Isolation, bioactivity profiling and untargeted metabolomics. Microorganisms, 8(11), 1732.
Wang, P., Huang, J., Kurtan, T., Mandi, A., Jia, H., Cheng, W., & Lin, W. (2020). Aaptodines A–D, Spiro naphthyridine–furooxazoloquinoline hybrid alkaloids from the Sponge Aaptos suberitoides. Organic Letters, 22(21), 8215–8218.
Wang, W., Park, K.-H., Lee, J., Oh, E., Park, C., Kang, E., Lee, J., & Kang, H. (2020). A New Thiopeptide Antibiotic, micrococcin P3, from a marine-derived Strain of the bacterium Bacillus stratosphericus. Molecules, 25(19), 4383.
Wibowo, J. T., Kellermann, M. Y., Köck, M., Putra, M. Y., Murniasih, T., Mohr, K. I., Wink, J., Praditya, D. F., Steinmann, E., & Schupp, P. J. (2021). Anti-infective and antiviral activity of valinomycin and its analogues from a sea cucumber-associated bacterium, Streptomyces sp. SV 21. Marine Drugs, 19(2), 81.
Wieser, M., Denner, E. B. M., Kämpfer, P., Schumann, P., Tindall, B., Steiner, U., Vybiral, D., Lubitz, W., Maszenan, A. M., & Patel, B. K. C. (2002). Emended descriptions of the genus Micrococcus, Micrococcus luteus (Cohn 1872) and Micrococcus lylae (Kloos et al. 1974). International Journal of Systematic and Evolutionary Microbiology, 52(2), 629–637.
Yoon, S.-H., Ha, S.-M., Kwon, S., Lim, J., Kim, Y., Seo, H., & Chun, J. (2017). Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. International Journal of Systematic and Evolutionary Microbiology, 67(5), 1613.