An Integrated Authentication Analysis of Citrus aurantium L. Essential Oil Based on FTIR Spectroscopy and Chemometrics with Tuning Parameters
Abstract
Citrus aurantium L. essential oil or orange oil (OO) became more popular in recent years due to its benefit for human health. An “economically motivated adulteration” can be potentially occurred to achieve more profit in the market. On the other hand, a cheaper oil such as coconut oil (CO) was commonly used as adulterant. The objective of this study was to perform authentication analysis of OO by FTIR spectroscopy and chemometrics. Principal component analysis was applied in the exploratory data analysis at the initial stage of authentication analysis. Multivariate calibration of principal component regression (PCR) and partial least squares regression (PLSR) were constructed using five types of pre-processed FTIR spectral data. The PCR model using Standard Normal Variate (SNV) spectra was selected as the best prediction model for OO (Rcal2 = 0.999; RMSEC = 0.193; RCV2 = 0.998; RMSECV = 0.456; Rval2 = 0.992; RMSEP = 0.989), whereas the PLSR model using SNV spectra was selected as the best prediction model for CO (Rcal2 = 0.999; RMSEC = 0.174; RCV2 = 0.999; RMSECV = 0.476; Rval2 = 0.992; RMSEP = 0.991). SNV spectra of OO, CO, and binary mixture of OO+CO were used to generate sparse partial least squares-discriminant analysis (sPLS-DA) model. Tuning parameters of component numbers, the number of variables “keepX”, and the distance of prediction was executed. The component number of three with “keepX” for component 1, 2, and 3 were 1, 5, and 1, respectively, were selected along with the maximum distance approach to construct the discriminant model. The final sPLS-DA model explained the total variances of 94% with satisfaction separatibility of 100%, 97.8%, and 100% for OO, CO, and OO+CO, respectively.
References
Amit, Jamwal, R., Kumari, S., Dhaulaniya, A. S., Balan, B., & Singh, D. K. (2020). Application of ATR-FTIR spectroscopy along with regression modelling for the detection of adulteration of virgin coconut oil with paraffin oil. LWT - Food Science and Technology, 118, 108754. https://doi.org/10.1016/j.lwt.2019.108754
Bnina, E. Ben, Hajlaoui, H., Chaieb, I., Daami-Remadi, M., Said, M. Ben, & Jannet, H. Ben. (2019). Chemical composition, antimicrobial and insecticidal activities of the tunisian Citrus aurantium essential oils. Czech Journal of Food Sciences, 37(2), 81–92. https://doi.org/10.17221/202/2017-CJFS
Boussaada, O., & Chemli, R. (2007). Seasonal Variation of Essential Oil Composition of Citrus Aurantium L. var. amara. Journal of Essential Oil-Bearing Plants, 10(2), 109–120. https://doi.org/10.1080/0972060X.2007.10643528
Cebi, N., Taylan, O., Abusurrah, M., & Sagdic, O. (2021). Detection of orange essential oil, isopropyl myristate, and benzyl alcohol in lemon essential oil by ftir spectroscopy combined with chemometrics. Foods, 10(27), 1–14. https://doi.org/10.3390/foods10010027
de Araújo, J. S. F., de Souza, E. L., Oliveira, J. R., Gomes, A. C. A., Kotzebue, L. R. V., da Silva Agostini, D. L., de Oliveira, D. L. V., Mazzetto, S. E., da Silva, A. L., & Cavalcanti, M. T. (2020). Microencapsulation of sweet orange essential oil (Citrus aurantium var. dulcis) by liophylization using maltodextrin and maltodextrin/gelatin mixtures: Preparation, characterization, antimicrobial and antioxidant activities. International Journal of Biological Macromolecules, 143, 991–999. https://doi.org/10.1016/j.ijbiomac.2019.09.160
Derdar, H., Belbachir, M., & Harrane, A. (2019). A green synthesis of polylimonene using maghnite-H+, an exchanged montmorillonite clay, as eco-catalyst. Bulletin of Chemical Reaction Engineering &Amp; Catalysis, 14(1), 69–78. https://doi.org/10.9767/bcrec.14.1.2692.69-78
Devos, O., Downey, G., & Duponchel, L. (2014). Simultaneous data pre-processing and SVM classification model selection based on a parallel genetic algorithm applied to spectroscopic data of olive oils. Food Chemistry, 148, 124–130. https://doi.org/10.1016/J.FOODCHEM.2013.10.020
Djebbi, T., Soltani, A., Chargui, H., Yangui, I., Messaoud, C., & Mediouni Ben Jemâa, J. (2021). Composition and fumigant protectant potential of Tunisian Citrus aurantium L. essential oils against Rhyzopertha dominica F.(Coleoptera: Bostrichidae). The 1st International Electronic Conference on Entomology, 10643. https://doi.org/10.3390/iece-10643
Dunning, T. (2013). Aromatherapy: Overview, safety and quality issues.OA Alternative Medicine. OA Alternative Medicine, 1(1), 1–6. https://www.oapublishinglondon.com/article/518/
Dzulfianto, A., Riswanto, F. D. O., & Rohman, A. (2018). The employment of UV-spectroscopy combined with multivariate calibration for analysis of paracetamol, Propyphenazone and caffeine. Indonesian Journal of Pharmacy, 28(4), 191–197. https://doi.org/10.14499/indonesianjpharm28iss4pp191
Edris, A. E. (2007). Pharmaceutical and therapeutic Potentials of essential oils and their individual volatile constituents: a review. Phytotherapy Research, 21(4), 308–323. https://doi.org/10.1002/PTR.2072
Esposito, E. R., Bystrek, M. V., & Klein, J. S. (2014). An Elective Course in Aromatherapy Science. American Journal of Pharmaceutical Education, 78(4). https://doi.org/10.5688/AJPE78479
Gautam, R. D., Kumar, A., Kumar, R., Chauhan, R., Singh, S., Kumar, M., Kumar, D., Kumar, A., & Singh, S. (2021). Clonal Propagation of Valeriana jatamansi Retains the Essential Oil Profile of Mother Plants: An Approach Toward Generating Homogenous Grade of Essential Oil for Industrial Use. Frontiers in Plant Science, 12(738247), 1–13. https://doi.org/10.3389/FPLS.2021.738247/BIBTEX
Hemmateenejad, B., Akhond, M., & Samari, F. (2007). A comparative study between PCR and PLS in simultaneous spectrophotometric determination of diphenylamine, aniline, and phenol: Effect of wavelength selection. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 67(3–4), 958–965. https://doi.org/10.1016/j.saa.2006.09.014
Hyldgaard, M., Mygind, T., & Meyer, R. L. (2012). Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Frontiers in Microbiology, 3(1), 12. https://doi.org/10.3389/FMICB.2012.00012/BIBTEX
Irnawati, Riswanto, F. D. O., Riyanto, S., Martono, S., & Rohman, A. (2021). The use of software packages of R factoextra and FactoMineR and their application in principal component analysis for authentication of oils. Indonesian Journal of Chemometrics and Pharmaceutical Analysis, 1(1), 1–10.
Jiménez-Carvelo, A. M., Martín-Torres, S., Ortega-Gavilán, F., & Camacho, J. (2021). PLS-DA vs sparse PLS-DA in food traceability. A case study: Authentication of avocado samples. Talanta, 224(121904), 1–10. https://doi.org/10.1016/j.talanta.2020.121904
Johnson, R. (2014). Food fraud and “Economically motivated adulteration” of food and food ingredients. In Food Fraud and Adulterated Ingredients: Background, Issues, and Federal Action.
Jollife, I. T., & Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065), 1–16. https://doi.org/10.1098/rsta.2015.0202
Kassambara, A. (2018). Machine Learning Essentials: Practical Guide in R. STHDA.
Kassambara, A., & Mundt, F. (2017). Package “factoextra” for R: Extract and Visualize the Results of Multivariate Data Analyses. In R package version (pp. 1–77).
Krishna, A., Tiwari, R., & Kumar, S. (2000). Aromatherapy-an alternative health care through essential oils. Journal of Medicinal and Aromatic Plant Sciences, 22(1B), 798–804. https://eurekamag.com/research/010/201/010201750.php
Lê Cao, K. A., Boitard, S., & Besse, P. (2011). Sparse PLS discriminant analysis: Biologically relevant feature selection and graphical displays for multiclass problems. BMC Bioinformatics, 12(1), 253. https://doi.org/10.1186/1471-2105-12-253
Lê Cao, K. A., Rossouw, D., Robert-Granié, C., & Besse, P. (2008). A sparse PLS for variable selection when integrating omics data. Statistical Applications in Genetics and Molecular Biology, 7(1), 1–25. https://doi.org/10.2202/1544-6115.1390
Lee, M. Y. (2018). Essential Oils as Repellents against Arthropods. BioMed Research International, 2018. https://doi.org/10.1155/2018/6860271
Lv, X., Zhao, S., Ning, Z., Zeng, H., Shu, Y., Tao, O., Xiao, C., Lu, C., & Liu, Y. (2015). Citrus fruits as a treasure trove of active natural metabolites that potentially provide benefits for human health. Chemistry Central Journal, 9(68), 1–14. https://doi.org/10.1186/S13065-015-0145-9
Maksoud, S., Abdel-Massih, R. M., Rajha, H. N., Louka, N., Chemat, F., Barba, F. J., & Debs, E. (2021). Citrus aurantium L. Active constituents, biological effects and extraction methods. an updated review. Molecules, 26(19), 1–18. https://doi.org/10.3390/molecules26195832
Manniche, L. (1999). Sacred luxuries : fragrance, aromatherapy, and cosmetics in Ancient Egypt. Cornell University Press.
Mevik, B., & Wehrens, R. (2019). Introduction to the pls Package. In R Package Notes.
Miller, J. N., Miller, J. C., & Miller, R. D. (2018). Statistics and Chemometrics for Analytical Chemistry (Seventh). Pearson Education Limited.
Mishra, P., Roger, J. M., Jouan-Rimbaud-Bouveresse, D., Biancolillo, A., Marini, F., Nordon, A., & Rutledge, D. N. (2021). Recent trends in multi-block data analysis in chemometrics for multi-source data integration. TrAC Trends in Analytical Chemistry, 137(116206), 1–15. https://doi.org/10.1016/J.TRAC.2021.116206
Moros, J., Garrigues, S., & Guardia, M. de la. (2010). Vibrational spectroscopy provides a green tool for multi-component analysis. TrAC - Trends in Analytical Chemistry, 29(7), 578–591. https://doi.org/10.1016/j.trac.2009.12.012
Naeem, A., Abbas, T., Mohsin, T., & Hasnain, A. (2018). Brief Background and Uses. Annals of Short Reports, 1(1), 1–6.
Narkhede, S. (2018). Understanding AUC - ROC Curve. Towards Data Science. https://towardsdatascience.com/understanding-auc-r
Nurani, L. H., Rohman, A., Windarsih, A., Guntarti, A., Riswanto, F. D. O., Lukitaningsih, E., Fadzillah, N. A., & Rafi, M. (2021). Metabolite Fingerprinting Using 1H-NMR Spectroscopy and Chemometrics for Classification of Three Curcuma Species from Different Origins. Molecules, 26(24), 1–13. https://doi.org/https://doi.org/10.3390/molecules26247626
Putri, A. R., Rohman, A., & Riyanto, S. (2019). Authentication of patin (Pangasius micronemus) fish oil adulterated with palm oil using ftir spectroscopy combined with chemometrics. International Journal of Applied Pharmaceutics, 11(3), 195–199. https://doi.org/10.22159/ijap.2019v11i3.30947
Refaie, R., Zaghloul, S., Elbisi, M.K., & Shaaban, H. A. (2020). Bioactive Cotton for Packaging and Storage of Grains using Aromatic Components. International Research Journal of Applied Sciences, 2(2), 40–49. https://scirange.com/fulltext/irjas.2020.40.49
Reid, L. M., O’Donnell, C. P., & Downey, G. (2006). Recent technological advances for the determination of food authenticity. Trends in Food Science and Technology, 17(7), 344–353. https://doi.org/10.1016/j.tifs.2006.01.006
Riswanto, F. D. O., Rohman, A., Pramono, S., & Martono, S. (2021). The employment of UV-Vis spectroscopy and chemometrics techniques for analyzing the combination of genistein and curcumin. Journal of Applied Pharmaceutical Science, 11(3), 154–161. https://doi.org/10.7324/JAPS.2021.110318
Riswanto, F. D. O., Windarsih, A., Lukitaningsih, E., Rafi, M., Fadzilah, N. A., & Rohman, A. (2022). Metabolite Fingerprinting Based on 1H-NMR Spectroscopy and Liquid Chromatography for the Authentication of Herbal Products. Molecules, 27(1198), 1–17. https://doi.org/https://doi.org/10.3390/ molecules27041198
Rohart, F., Gautier, B., Singh, A., & Lê Cao, K. A. (2017). mixOmics: An R package for ‘omics feature selection and multiple data integration. PLoS Computational Biology, 13(11), 1–19. https://doi.org/10.1371/journal.pcbi.1005752
Rohman, A., Che Man, Y. Bin, & Eakub Ali, M. D. (2019). The authentication of virgin coconut oil from grape seed oil and soybean oil using ftir spectroscopy and chemometrics. International Journal of Applied Pharmaceutics, 11(2), 259–263. https://doi.org/10.22159/ijap.2019v11i2.31758
Rohman, A., & Che Man, Y. B. (2010). Fourier transform infrared (FTIR) spectroscopy for analysis of extra virgin olive oil adulterated with palm oil. Food Research International, 43, 886–892. https://doi.org/10.1016/j.foodres.2009.12.006
Rohman, A., & Che Man, Y. B. (2011). Potential Use of FTIR-ATR Spectroscopic Method for Determination of Virgin Coconut Oil and Extra Virgin Olive Oil in Ternary Mixture Systems. Food Analytical Methods, 4(2), 155–162. https://doi.org/10.1007/s12161-010-9156-2
Rohman, A., Setyaningrum, D. L., & Riyanto, S. (2014). FTIR Spectroscopy Combined with Partial Least Square for Analysis of Red Fruit Oil in Ternary Mixture System. International Journal of Spectroscopy, 2014, 1–5. https://doi.org/10.1155/2014/785914
Sanei-Dehkordi, A., Sedaghat, M. M., Vatandoost, H., & Abai, M. R. (2016). Chemical compositions of the peel essential oil of Citrus aurantium and its natural larvicidal activity against the malaria vector Anopheles stephensi (Diptera: Culicidae) in comparison with Citrus paradisi. Journal of Arthropod-Borne Diseases, 10(4), 577–585.
Shabanian, M., Hajibeygi, M., & Raeisi, A. (2020). 2 - FTIR characterization of layered double hydroxides and modified layered double hydroxides. In S. Thomas & S. Daniel (Eds.), Layered Double Hydroxide Polymer Nanocomposites (pp. 77–101). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-08-101903-0.00002-7
Sim, S. F., & Jeffrey Kimura, A. L. (2019). Partial least squares (PLS) integrated fourier transform infrared (FTIR) approach for prediction of moisture in transformer oil and lubricating oil. Journal of Spectroscopy, 2019(5916506), 1–10. https://doi.org/10.1155/2019/5916506
Simona, J., Dani, D., Petr, S., Marcela, N., Jakub, T., & Bohuslava, T. (2021). Edible films from carrageenan/orange essential oil/trehalose—structure, optical properties, and antimicrobial activity. Polymers, 13(3), 1–19. https://doi.org/10.3390/polym13030332
Stevens, A., & Ramirez Lopez, L. (2020). An introduction to the prospectr package. R Package Vignette, Report No.: R Package Version 0.1. https://cran.r-project.org/web/packages/prospectr/vignettes/prospectr.html
Suntar, I., Khan, H., Patel, S., Celano, R., & Rastrelli, L. (2018). An overview on Citrus aurantium L.: Its functions as food ingredient and therapeutic agent. Oxidative Medicine and Cellular Longevity, 7864269, 1–13.
Van Der Maaten, L. J. P., Postma, E. O., & Van Den Herik, H. J. (2009). Dimensionality Reduction: A Comparative Review. Journal of Machine Learning Research, 10, 1–41. https://doi.org/10.1080/13506280444000102
Wińska, K., Mączka, W., Łyczko, J., Grabarczyk, M., Czubaszek, A., & Szumny, A. (2019). Essential Oils as Antimicrobial Agents—Myth or Real Alternative? Molecules, 24(11). https://doi.org/10.3390/MOLECULES24112130
Yang, X., Wang, C., Li, S., Huang, K., Li, M., Mao, W., Cao, S., & Xia, J. (2017). Study on the synthesis of bio-based epoxy curing agent derived from myrcene and castor oil and the properties of the cured products. RSC Advances, 7(1), 238–247. https://doi.org/10.1039/c6ra24818g