Kandungan Kimia dan Potensi Bawang Merah (Allium cepa L.) Sebagai Inhibitor SARS-CoV-2

  • Ancilla Yovita Devi Setiawan
  • Rosari Indahni Putri
  • Friska Dwi Indayani
  • Ni Made Santi Widiasih
  • Novita Anastasia
  • Dewi Setyaningsih
  • Florentinus Dika Octa Riswanto Faculty of Pharmacy, Sanata Dharma University
Keywords: Allium cepa, anthocyanin, kaempferol, SARS-CoV-2, quercetin


SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) is a new type of coronavirus that was discovered in Wuhan in December 2019. This virus is the cause of COVID-19, which is still a global pandemic until now.  In onion (Allium cepa L.) there are several secondary metabolites including flavonoids. Three flavonoid classes are mainly found in onion are quercetin, anthocyanins and kaempferol.  This compound has demonstrated the inhibitory potential associated with COVID-19.  Furthermore, in this study, it was known the potential of onions as an inhibitor of 3CLPro SARS-CoV-2 by the flavonoid compounds present in onion.  The literature search method was obtained from Pubchem, Elsevier, Science Direct, and Google Scholar using the keywords "Quercetin", "Anthocyanin", "Kaempferol", "Allium cepa L."  and “SARS-CoV-2”.  The selected literature is literature with a maximum publishing range of the last 10 years.  Quercetin showed antiviral properties of SARS-CoV-2 with inhibition of 3CLpro, ACE2 and PLpro while anthocyanins and kaempferol also showed inhibition of PLpro SARS-CoV-2.  Quercetin, kaempferol, anthocyanins can be used as promising candidates for the development of drugs to treat infections caused by SARS-CoV-2.


1. Wang, M.Y.; Zhao, R.; Gao, L.J.; Gao, X.F.; Wang, D.P.; Cao, J.M. SARS-CoV-2: Structure, Biology, and Structure-Based Therapeutics Development. Front. Cell. Infect. Microbiol. 2020, 10, 1–17.
2. Wu, F.; Zhao, S.; Yu, B.; Chen, Y.M.; Wang, W.; Song, Z.G.; Hu, Y.; Tao, Z.W.; Tian, J.H.; Pei, Y.Y.; dkk. A new coronavirus associated with human respiratory disease in China. Nature 2020, 579, 265–269.
3. Yesudhas, D.; Srivastava, A.; Gromiha, M.M. COVID-19 outbreak: history, mechanism, transmission, structural studies and therapeutics. Infection 2021, 49, 199–213.
4. Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; dkk. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020, 395, 507–513, doi:10.1016/S0140-6736(20)30211-7.
5. WHO WHO Coronavirus (COVID-19) Dashboard Tersedia pada: https://covid19.who.int/ (diakses Nov 17, 2021).
6. Huang, Y.; Yang, C.; Xu, X.; Xu, W.; Liu, S. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol. Sin. 2020, 41, 1141–1149.
7. Tsai, P.H.; Lai, W.Y.; Lin, Y.Y.; Luo, Y.H.; Lin, Y.T.; Chen, H.K.; Chen, Y.M.; Lai, Y.C.; Kuo, L.C.; Chen, S.D.; dkk. Clinical manifestation and disease progression in COVID-19 infection. J. Chinese Med. Assoc. 2021, 84, 3–8.
8. Hu, B.; Guo, H.; Zhou, P.; Shi, Z.-L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2021, 19, 141–154, doi:10.1038/s41579-020-00459-7.
9. V’kovski, P.; Kratzel, A.; Steiner, S.; Stalder, H.; Thiel, V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat. Rev. Microbiol. 2021, 19, 155–170.
10. Finkel, Y.; Mizrahi, O.; Nachshon, A.; Weingarten-Gabbay, S.; Morgenstern, D.; Yahalom-Ronen, Y.; Tamir, H.; Achdout, H.; Stein, D.; Israeli, O.; dkk. The coding capacity of SARS-CoV-2. Nature 2021, 589, 125–130, doi:10.1038/s41586-020-2739-1.
11. Chan, J.F.W.; Kok, K.H.; Zhu, Z.; Chu, H.; To, K.K.W.; Yuan, S.; Yuen, K.Y. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microbes Infect. 2020, 9, 221–236.
12. Qiu, Y.; Xu, K. Functional studies of the coronavirus nonstructural proteins. STEMedicine 2020, 1, e39, doi:10.37175/stemedicine.v1i2.39.
13. Wondmkun, Y.T.; Mohammed, O.A. A review on novel drug targets and future directions for COVID-19 treatment. Biol. Targets Ther. 2020, 14, 77–82, doi:10.2147/BTT.S266487.
14. Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C.-L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science (80-. ). 2020, 367, 1260–1263.
15. Venkatagopalan, P.; Daskalova, S.M.; Lopez, L.A.; Dolezal, K.A.; Hogue, B.G. Coronavirus envelope (E) protein remains at the site of assembly. Virology 2015, 478, 75–85, doi:10.1016/j.virol.2015.02.005.
16. Chang, C.K.; Lo, S.C.; Wang, Y.S.; Hou, M.H. Recent insights into the development of therapeutics against coronavirus diseases by targeting N protein. Drug Discov. Today 2016, 21, 562–572.
17. McBride, R.; van Zyl, M.; Fielding, B.C. The coronavirus nucleocapsid is a multifunctional protein. Viruses 2014, 6, 2991–3018.
18. Schoeman, D.; Fielding, B.C. Coronavirus envelope protein: current knowledge. Virol. J. 2019, 16, 69, doi:10.1186/s12985-019-1182-0.
19. von Rintelen, K.; Arida, E.; Häuser, C. A review of biodiversity-related issues and challenges in megadiverse Indonesia and other Southeast Asian countries. Res. Ideas Outcomes 2017, 3, e20860.
20. Sari, V.; Miftahudin; Sobir Keragaman Genetik Bawang Merah ( Allium cepa L .) Berdasarkan Marka Morfologi dan ISSR. J. agron 2017, 45, 175–181.
21. Juliadi, D.; Agustini, N.P.D. Ekstrak Kuersetin Kulit Umbi Bawang Merah (Allium Cepa L.) Kintamani Sebagai Krim Antiinflamasi Pada Mencit Putih Jantan Mus Musculus Dengan Metode Hot Plate. J. Ilm. Medicam. 2019, 5, 97–104.
22. Suleria, H.A.R.; Butt, M.S.; Anjum, F.M.; Saeed, F.; Khalid, N. Onion: Nature Protection Against Physiological Threats. Crit. Rev. Food Sci. Nutr. 2015, 55, 50–66.
23. Farag, M.A.; Ali, S.E.; Hodaya, R.H.; El-Seedi, H.R.; Sultani, H.N.; Laub, A.; Eissa, T.F.; Abou-Zaid, F.O.F.; Wessjohann, L.A. Phytochemical profiles and antimicrobial activities of Allium cepa red cv. and A. sativum subjected to different drying methods: A comparative MS-based metabolomics. Molecules 2017, 22.
24. Zhao, X.X.; Lin, F.J.; Li, H.; Li, H. Bin; Wu, D.T.; Geng, F.; Ma, W.; Wang, Y.; Miao, B.H.; Gan, R.Y. Recent Advances in Bioactive Compounds, Health Functions, and Safety Concerns of Onion (Allium cepa L.). Front. Nutr. 2021, 8.
25. Fredotovíc, Ž.; Šprung, M.; Soldo, B.; Ljubenkov, I.; Budić-Leto, I.; Bilušić, T.; Cikeš-Čulić, V.; Puizina, J. Chemical composition and biological activity of allium cepa L. and Allium × cornutum (Clementi ex Visiani 1842) methanolic extracts. Molecules 2017, 22.
26. Metrani, R.; Singh, J.; Acharya, P.K.; Jayaprakasha, G., & S. Patil, B.; Comparative Metabolomics Profiling of Polyphenols, Nutrients and Antioxidant Activities of Two Red Onion (Allium cepa L.) Cultivars. Plants. 2020. 9(9), 1077.
27. Boukeria, S.; Kadi, K.; Kalleb, R.; Benbott, A.; Bendjedou, D.; Yahia, A. Phytochemical and physicochemical characterization of Allium sativum L. and Allium cepa L. Essential oils. J. Mater. Environ. Sci. 2016, 7, 2362–2368.
28. Gazuwa, S.; Makanjuola, E.; Jaryum, K.; Kutshik, J.; Mafulul, S. The Phytochemical Composition of Allium Cepa/Allium Sativum and the Effects of Their Aqueous Extracts (Cooked and Raw Forms) on the Lipid Profile and other Hepatic Biochemical Parameters in Female Albino Wistar Rats. 2013, 4, 406–410.
29. Irozuru, C.E.I.; Olugbodi, J.O.; Arunsi, U.O.; Ladeji, O. Phytochemical screening and evaluation of antioxidant capacities of Allium cepa, Allium sativum, and Monodora myristica using in vitro and in vivo models. AROC Food Nutr. 2021, 1, 41–52, doi:10.53858/arocfn01014152.
30. Ladeska, V.; Rindita; Amyra, N.; Veranthy, T.D. Analisa Fisikokimia dan Aktivitas Antioksidan Umbi Bawang Bombay ( Allium cepa L .) Physicochemical Analysis and Antioxidant Activity of Onion Bulbs ( Allium cepa L .). J. Jamu Indones. 2020, 5, 56–67.
31. Marrelli, M.; Amodeo, V.; Statti, G.; Conforti, F. Biological properties and bioactive components of allium cepa L.: Focus on potential benefits in the treatment of obesity and related comorbidities. Molecules 2019, 24.
32. Shobha, M.; Inala, R.; Kiranmayee, P.; Kutty, A.V.M. Original Article Qualitative and quantitative phytochemical analysis of Allium cepa L springs with a focus on its biological activity : A pilot study. 2019, 9, 34–41.
33. Syahrina, S.; Asfianti, V.; Gurning, K.; Iksen, I. Phytochemical Screening and Anti-Hyperuricemia Activity Test In Vivo of Ethanolic Extract of Shallot (Allium cepa L.) Skin. Borneo J. Pharm. 2020, 3, 146–151, doi:10.33084/bjop.v3i3.1365.
34. Hasibuan, A.S.; Edrianto, V. Sosialiasi Skrining Fitokimia Ekstrak Etanol Umbi Bawang Merah (Allium cepa L.). J. Pengmas Kestra 2021, 1, 80–84, doi:10.35451/jpk.v1i1.732.
35. Liguori, L.; Califano, R.; Albanese, D.; Raimo, F.; Crescitelli, A.; Di Matteo, M. Chemical composition and antioxidant properties of five white onion (Allium cepa L.) landraces. J. Food Qual. 2017, 2017, doi:10.1155/2017/6873651.
36. Sofihidayati, T. Penetapan Kadar Flavonoid Dan Aktivitas Antimikroba Ekstrak Etanol Kulit Bawang Merah (Allium cepa L.) terhadap Staphylococcus aureus. FITOFARMAKA J. Ilm. Farm. 2018, 8, 99–104.
37. Sanchez-Rangel, E.; Inzucchi, S.E. Metformin: clinical use in type 2 diabetes. Diabetologia 2017, 60, 1586–1593, doi:10.1007/s00125-017-4336-x.
38. Abian, O.; Ortega-Alarcon, D.; Jimenez-Alesanco, A.; Ceballos-Laita, L.; Vega, S.; Reyburn, H.T.; Rizzuti, B.; Velazquez-Campoy, A. Structural stability of SARS-CoV-2 3CLpro and identification of quercetin as an inhibitor by experimental screening. Int. J. Biol. Macromol. 2020, 164, 1693–1703, doi:10.1016/j.ijbiomac.2020.07.235.
39. Adegbola, P.I.; Semire, B.; Fadahunsi, O.S.; Adegoke, A.E. Molecular docking and ADMET studies of Allium cepa, Azadirachta indica and Xylopia aethiopica isolates as potential anti-viral drugs for Covid-19. VirusDisease 2021, 32, 85–97, doi:10.1007/s13337-021-00682-7.
40. Agrawal, P.K.; Agrawal, C.; Blunden, G. Quercetin: Antiviral Significance and Possible COVID-19 Integrative Considerations. Nat. Prod. Commun. 2020, 15, 1–10, doi:10.1177/1934578X20976293.
41. Derosa, G.; Maffioli, P.; D’Angelo, A.; Di Pierro, F. A role for quercetin in coronavirus disease 2019 (COVID-19). Phyther. Res. 2021, 35, 1230–1236, doi:10.1002/ptr.6887.
42. Gu, Y.Y.; Zhang, M.; Cen, H.; Wu, Y.F.; Lu, Z.; Lu, F.; Liu, X.S.; Lan, H.Y. Quercetin as a potential treatment for COVID-19-induced acute kidney injury: Based on network pharmacology and molecular docking study. PLoS One 2021, 16, 1–17, doi:10.1371/journal.pone.0245209.
43. Pan, B.; Fang, S.; Zhang, J.; Pan, Y.; Liu, H.; Wang, Y.; Li, M.; Liu, L. Chinese herbal compounds against SARS-CoV-2: Puerarin and quercetin impair the binding of viral S-protein to ACE2 receptor. Comput. Struct. Biotechnol. J. 2020, 18, 3518–3527, doi:10.1016/j.csbj.2020.11.010.
44. Zhan, Y.; Ta, W.; Tang, W.; Hua, R.; Wang, J.; Wang, C.; Lu, W. Potential antiviral activity of isorhamnetin against SARS-CoV-2 spike pseudotyped virus in vitro. Drug Dev. Res. 2021, doi:10.1002/ddr.21815.
45. Fakhar, Z.; Faramarzi, B.; Pacifico, S.; Faramarzi, S. Anthocyanin derivatives as potent inhibitors of SARS-CoV-2 main protease: An in-silico perspective of therapeutic targets against COVID-19 pandemic. J. Biomol. Struct. Dyn. 2021, 39, 6171–6183.
46. Cherrak, S.A.; Merzouk, H.; Mokhtari-Soulimane, N. Potential bioactive glycosylated flavonoids as SARS-CoV-2 main protease inhibitors: A molecular docking and simulation studies. PLoS One 2020, 15, 1–10.
47. Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; dkk. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506.
48. Jo, S.; Kim, S.; Shin, D.H.; Kim, M.S. Inhibition of SARS-CoV 3CL protease by flavonoids. J. Enzyme Inhib. Med. Chem. 2020, 35, 145–151.
49. Dipierro, F.; Khan, A.; Bertuccioli, A.; Maffioli, P.; Derosa, G.; Khan, S.; Khan, B.A.; Nigar, R.; Ujjan, I.; Devrajani, B.R. Quercetin Phytosome® as a potential candidate for managing COVID-19. Minerva Gastroenterol. 2021, 67, 19–195.
50. Metrani, R.; Singh, J.; Acharya, P.; K. Jayaprakasha, G.; S. Patil, B. Comparative Metabolomics Profiling of Polyphenols, Nutrients and Antioxidant Activities of Two Red Onion (Allium cepa L.) Cultivars. Plants 2020, 9, 1077.
51. Galavi, A.; Hosseinzadeh, H.; Razavi, B.M. The effects of Allium cepa L. (onion) and its active constituents on metabolic syndrome: A review. Iran. J. Basic Med. Sci. 2021, 24, 3–16.
52. Huang, F.; Li, Y.; Leung, E.L.-H.; Liu, X.; Liu, K.; Wang, Q.; Lan, Y.; Li, X.; Yu, H.; Cui, L.; dkk. A review of therapeutic agents and Chinese herbal medicines against SARS-COV-2 (COVID-19). Pharmacol. Res. 2020, 158, 104929, doi:10.1016/j.phrs.2020.104929.
53. Khan, A.; Heng, W.; Wang, Y.; Qiu, J.; Wei, X.; Peng, S.; Saleem, S.; Khan, M.; Ali, S.S.; Wei, D.Q. In silico and in vitro evaluation of kaempferol as a potential inhibitor of the SARS-CoV-2 main protease (3CLpro). Phyther. Res. 2021, 35, 2841–2845, doi:10.1002/ptr.6998.
54. Huang, Y.F.; Bai, C.; He, F.; Xie, Y.; Zhou, H. Review on the potential action mechanisms of Chinese medicines in treating Coronavirus Disease 2019 (COVID-19). Pharmacol. Res. 2020, 158, 104939, doi:10.1016/j.phrs.2020.104939.
55. Babaeekhou, L.; Ghane, M.; Abbas-Mohammadi, M. In silico targeting SARS-CoV-2 spike protein and main protease by biochemical compounds. Biologia (Bratisl). 2021, doi:10.1007/s11756-021-00881-z.
56. Di Pierro, F.; Iqtadar, S.; Khan, A.; Ullah Mumtaz, S.; Masud Chaudhry, M.; Bertuccioli, A.; Derosa, G.; Maffioli, P.; Togni, S.; Riva, A.; dkk. Potential clinical benefits of quercetin in the early stage of COVID-19: Results of a second, pilot, randomized, controlled and open-label clinical trial. Int. J. Gen. Med. 2021, 14, 2807–2816, doi:10.2147/IJGM.S318949.
How to Cite
Setiawan , A. Y. D., Putri , R. I., Indayani , F. D., Widiasih, N. M. S., Anastasia, N., Setyaningsih, D., & Riswanto, F. D. O. (2021). Kandungan Kimia dan Potensi Bawang Merah (Allium cepa L.) Sebagai Inhibitor SARS-CoV-2. Indonesian Journal of Chemometrics and Pharmaceutical Analysis, 1(3), 143-155. https://doi.org/10.22146/ijcpa.3584
Review Article