Lemongrass-Synthesized Silver Nanoparticles as Preservatives of Fermented Locust Beans

https://doi.org/10.22146/ifnp.91418

Bolanle Kudirat Saliu(1*), Tariq Oluwakunmi Agbabiaka(2), Jubril Olayinka Akolade(3)

(1) University of Ilorin, Ilorin, Nigeria
(2) University of Ilorin, Ilorin. Nigeria.
(3) Biotechnology Advanced Research Centre, Sheda Science and Technology Complex, Abuja, Nigeria,
(*) Corresponding Author

Abstract


Fermented locust beans (FLB), produced from Parkia biglobosa (Mimosaceae-Fabaceae), are used in many parts of West Africa, including Nigeria, as condiments to enhance the taste and nutritional quality of foods. These benefits are, however, marred by the short shelf-life of FLB. Traditional preservative methods and the use of chemicals have their shortcomings. This study, therefore, investigated the effectiveness of lemongrass-synthesized silver nanoparticles (LSSNP) as a preservative of FLB. The LSSNP was prepared, characterized, and used to treat fresh FLB at 10% v/w. Dynamic light scattering analysis revealed a mean hydrodynamic size of 89 nm for the LSSNP, while transmission electron micrograph showed roughly spherical particles with an average size of 100 nm. Bacillus licheniformis KGEB16, B. licheniformis APBSWPTB167, B. licheniformis PS4, B. subtilis CICC10148, and Enterobacter xiangfangensis M5S2B6 isolated were susceptible to LSSNP with comparable zones of inhibition to reference antibiotics. A significant reduction of the microbial load of FLB by up to 63.7% due to LSSNP treatment was achieved. The organoleptic and proximate properties of LSSNP-treated FLB were preserved. A histo-morphological study showed normal hepatic architecture in rats fed with LSSNP-treated FLB. This study showed that LSSNP possesses antimicrobial properties and can be employed as a green and safe alternative for the preservation
of FLB.


Keywords


lemongrass; silver nanoparticles; fermented locust beans; preservation

Full Text:

PDF


References

Ahmed, S., Ahmad, M., Swami, B. L., & Ikram, S. (2016). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. Journal of Advanced Research, 7(1), 17–28. https://doi.org/10.1016/j.jare.2015.02.007

Ajayi, E. and Afolayan, A. (2017). Green synthesis characterization and biological activities of silver nanoparticles from alkalinized Cymbopogon citratus Stapf. Advances in Natural Sciences: Nanoscience and Nanotechnology, 8(1), 015–017 doi: https://10.1088/
2043-6254/aa5cf7

Ajayi, O., Akinrinde, I., and Akinwunmi, O. (2015). Towards the development of shelf stable ‘iru’ (Parkia biglobosa) condiment bouillon cubes using corn, cassava and potato starch extracts as binders. Nigerian Food Journal, 33(1), 67-72.

Altinsoy, B. D., Şeker Karatoprak, G., and Ocsoy, I. (2019). Extracellular directed AgNPs formation and investigation of their antimicrobial and cytotoxic properties. Saudi Pharmaceutical Journal, 27(1), 9-16. doi:https://doi.org/10.1016/j.jsps.2018.07.013

Bajpai, V.K., Kamle, M., Shukla, S., Mahato, D.K., Chandra, P., Hwang, S.K., Kumar, P., Huh, Y.S. and Han, Y. 2018. Prospects of using nanotechnology for food preservation, safety, and security. Journal of Food and Drug Analysis, 26(4), 1201-1214. https://doi.org/
10.1016/j.jfda.2018.06.011

Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71-79. doi:https://doi.org/10.1016/j.jpha.2015.11.005

Baranwal, A., Srivastava, A., Kumar, P., Bajpai, P. K., Maurya, P. K. & Chandra, P. (2018). Prospects of nanostructure materials and their composites as antimicrobial agents. Frontiers in Microbiology, 9, 422. https://doi.org/
10.1016/S0065-3527(08)60046-9

Biswas, R., Alam, M., Sarkar, A., Haque, M.I., Hassa, M.M. and Hoque, M. (2022). Application of nanotechnology in food: processing, preservation, packaging, and safety assessment. Heliyon 8(11): e11795 doi: 10.1016/j.heliyon.2022.e11795

Buffet-Bataillon, S., Rabier, V., Bétrémieux, P., Beuchée, A., Bauer, M., Pladys, P. and Jolivet-Gougeon, A. 2009. Outbreak of Serratia marcescens in a neonatal intensive care unit: contaminated unmedicated liquid soap and risk factors. Journal of Hospital Infection, 72(1), 17-22. https://doi.org/10.1016/
j.jhin.2009.01.010

Bugno, A, Pinto T. J. 2022. Incubation time in sterility tests for pharmaceutical products. Boll Chim Farm. 141(6), 453 – 456. PMID 12577516

Carbone, M., Donia, D.T., Sabbatella, G., and Antiochia, R. (2016). Silver nanoparticles in polymeric matrices for fresh food packaging. Journal of King Saud University of Science, 28(4):273-279. http://doi.org/10.1016/
j.jksus.2016.05.004

Das, M. P., Livingstone, J. R., Veluswamy, P. & Das, J. (2017). Exploration of Wedelia chinensis leaf-assisted silver nanoparticles for antioxidant, antibacterial, and in vitro cytotoxic applications. Journal of Food and Drug Analysis, 26, 917–925. https://doi.org/10.1016/
j.jfda.2017.07.014

Dubey, S. P., Lahtinen, M., and Sillanpää, M. (2010). Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochemistry, 45(7), 1065-1071. https://doi.org/10.1016/j.procbio.2010.03.024

Ekpenyong, C. E., Akpan, E., and Nyoh, A. (2015). Ethnopharmacology, phytochemistry, and biological activities of Cymbopogon citratus (DC.) Stapf extracts. Chinese Journal of Natural Medicines, 13(5), 321-337. https://doi.org/10.1016/S1875-5364(15)
30023-6

Ezeonu, C. S., and Ejikeme, C. M. (2016). Qualitative and Quantitative Determination of Phytochemical Contents of Indigenous Nigerian Softwoods. New Journal of Science, 2016, 9. doi:10.1155/2016/5601327

Gu, C. T., Li, C. Y., Yang, L. J., and Huo, G. C. (2014). Enterobacter xiangfangensis sp. nov., isolated from Chinese traditional sourdough, and reclassification of Enterobacter sacchari Zhu et al. 2013 as Kosakonia sacchari comb. nov. International Journal of Systematic and Evolutionary Microbiology, 64(8), 2650-2656. https://doi.org/10.1099/ijs.0.064709-0

Hall, J. B., Dobrovolskaia, M. A., Patri A. K. and McNeil, S. E. (2007). Characterization of nanoparticles for therapeutics. Nanomedicine, 2(6) https://doi.org/
10.2217/17435889.2.6.789

Hamad, A., Nurlaeli, E., Pradani, D. Y., Djalil, A.D. and Hartanti, D. (2019). Application of lemongrass as natural preservatives for tofu. Jurnal Teknologi dan Indusri Pangan, 30(2), 100 – 109. doi:10.6066/jtip.2019.30.2.100

Hudzicki, J. (2009). Kirby-Bauer disk diffusion susceptibility test protocol. American Society for Microbiology

Ibrahim, K. E., Al-Mutary, M. G., Bakhiet, A. O. and Khan H.A. (2018). Histopathology of the Liver, Kidney, and Spleen of Mice Exposed to Gold Nanoparticles. Molecules 23,1848; doi:10.3390/molecules23081848

Khan,A. U., Wei, Y., Ahmad,A., Khan, Z. U. H., TahirK., Khan, S. U., Muhammad, N., Khan, F. U. and Yuan, Q. (2016). Enzymatic browning reduction in white cabbage, potent antibacterial and antioxidant activities of biogenic silver nanoparticles. Journal of Molecular Liquids, 215:39-46

Kumar, R., Ghoshal, G., Jain, A., & Goyal, M. (2017). Rapid green synthesis of silver nanoparticles (AgNPs) using (Prunus persica) plants extract: exploring its antimicrobial and catalytic activities. Journal of Nanomedicine & Nanotechnology, 8(4), 1–3. Doi: 10.4172/2157-7439.1000452

Lateef, A., Adelere, I. A., Gueguim-Kana, E. B., Asafa, T. B., and Beukes, L. S. (2015). Green synthesis of silver nanoparticles using keratinase obtained from a strain of Bacillus safensis LAU 13. International Nano Letters, 5(1), 29–35. doi:10.1007/s40089-014-0133-4

Lear, G., Dickie, I., Banks, J., Boyer, S., Buckley, H. L., Buckley T. R., Cruickshank, R, Dopheide, A., Handley, K. M., Hermans, S., Kamke, J., Lee, C. K, Robin, M., Morales, S. E., Orlovich, D. A., Smissen, R., Wood, J., Holdaway, R. (2018). Methods for the extraction, storage, amplification, and sequencing of DNA from environmental samples. New Zealand Journal of Ecology, 42. doi: 10.20417/nzjecol.42.9

Masurkar, S. A., Chaudhari, P. R., Shidore, V. B., and Kamble, S. P. (2011). Rapid Biosynthesis of Silver Nanoparticles Using Cymbopogan Citratus (Lemongrass) and its Antimicrobial Activity. Nano-Micro Lett, 3(3), 189-194. doi:10.1007/bf03353671

Menges, F. (2017). Spectragryph-optical spectroscopy software: Version, 1(4): 2016-2017.

Naguib, M., Mahmoud, U. M., Mekkawy, I. A., & Sayed, A. E. H. (2020). Hepatotoxic effects of silver nanoparticles on Clarias gariepinus; Biochemical, histopathological, and histochemical studies. Toxicology reports, 7, 133–141. https://doi.org/10.1016/j.toxrep.2020.01.002

Nwamaka, N. T., Chike, A., and Obiajulu, A. (2010). Role of bacteria isolates in the spoilage of fermented African Oil Bean Seed Ugba. Pakistan Journal of Biological Sciences, 13(10), 497. DOI: 10.3923/
pjbs.2010.497.503

Ojewumi, M. E. (2017). Optimization of fermentation conditions for the production of protein composition in Parkia biglobosa seeds using response surface methodology. International Journal of Applied Engineering Research, 12(22), 12852-12859.

Ojewumi, M. E. (2018). Effects of salting and drying on the deterioration rate of fermented Parkia biglobosa seed. Journal of Nutritional Health & Food Engineering, 8(1), 1–5. DOI: 10.15406/jnhfe.2018.08.00253

Olajuyigbe, F. M., and Ajele, J. O. (2008). Some properties of extracellular protease from Bacillus licheniformis LBBL-11 isolated from iru, a traditionally fermented African locust bean condiment. African Journal of Biochemistry Research, 2(10), 206-210. https://doi.org/10.5897/AJBR.9000218

Olasupo, N. O., Obayori, O. S. and Odunfa, S. A. (2010). Ethnic African fermented foods. pp 323-352, In: “Fermented Foods and Beverages of the world” Eds.J. P. Tamang and K. Kailasapathy, Taylor and Francis Group, CRC Press, Boca Raton, U.S.A. https://doi.org/10.1201/EBK1420094954

Oluwaniyi, O. O., Adegoke, H. I., Adesuji, E. T., Alabi, A. B., Bodede, S. O., Labulo, A. H., and Oseghale, C. O. (2016). Biosynthesis of silver nanoparticles using aqueous leaf extract of Thevetia peruviana Juss and its antimicrobial activities. Applied Nanoscience, 6(6), 903-912. doi:10.1007/s13204-015-0505-8

Prabhu, S., & Poulose, E. K. (2012). Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. International Nano Letters, 2(1), 32. https://doi.org/10.1186/2228-5326-2-32

Prakash, J., Vignesh, K., Anusuya, T., Kalaivani, T., Ramachandran, C., Sudha, R.R., Momna, R., Imran, K., Fazie, E., Deog-Hwan, O. and DevandVenkatasubbu, G. (2019). Application of nanoparticles in food preservation and food processing. Journal of Food Hygiene and Safety, 34(4): 317 – 324. https://doi.org/10.13103/
JFHS.2019.34.4.317

Roy, K., Sarkar, C. K., and Ghosh, C. K. (2015). Plant-mediated synthesis of silver nanoparticles using parsley (Petroselinum crispum) leaf extract: spectral analysis of the particles and antibacterial study. Applied Nanoscience, 5(8), 945-951. https://doi:10.1007/
s13204-014-0393-3

Roy, P., Das, B., Mohanty, A., and Mohapatra, S. (2017). Green synthesis of silver nanoparticles using Azadirachta indica leaf extract and its antimicrobial study. Applied Nanoscience, 7(8), 843–850. https://doi.org/
10.1007/s13204-017-0621-8

Saliu, B. K. and Idowu, R. E. (2023). Preservation of Fermented Locust Beans (Parkia biglobosa) Using Essential Oil from Lemongrass (Cymbopogon citratus). In: Advances in Biosciences 2: Pg 94 – 113

Saliu, B. K., Sule, I. O., Agbabiaka, T. O. and Zakariyah, R. F. (2019). Efficacy of Some Chemical Preservatives in Prolonging the Shelf Life of Fermented Locust Beans ‘iru’ UMYU Journal of Microbiology Research, 4(1), 62 – 71

Sanders, E. R. (2012). Aseptic Laboratory Techniques: Plating Methods. Journal of Visualized Experiments 63: 3064 doi: 10.3791/3064

Stevanović, M., Kovačević, B., Petković, J., Filipič, M., and Uskoković, D. (2011). Effect of poly-α, γ, L-glutamic acid as a capping agent on morphology and oxidative stress-dependent toxicity of silver nanoparticles. International Journal of Nanomedicine, 6, 2837. doi: 10.2147/IJN.S24889

Yende, S. R., Harle, U. N., and Chaugule, B. B. (2014). Therapeutic potential and health benefits of Sargassum species. Pharmacognosy Reviews, 8(15), 1-7. doi:10.4103/0973-7847.125514

Zebedee, N. E., Onwosi, C. O., Nwagu, T. N. and Amadi, O. C. (2022). Changes in the enzymes, amino acids, metal ions, and flavor profile during fermentation of African Locust Bean seeds ‘Parkia biglobosa’ to Daddawa. Bio-Research 2(2), 1533 – 1545 https://dx.doi.org/10.4314/br.v20i2.4



DOI: https://doi.org/10.22146/ifnp.91418

Article Metrics

Abstract views : 373 | views : 222

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Food and Nutrition Progress (print ISSN 0854-6177, online ISSN 2597-9388) is published by the Indonesian Association of Food Technologist in collaboration with Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada.

Journal of Indonesian Food and Nutrition Progress have been indexed by: 

   

 

This works is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.