Study on The Impact of Gelatin Coating Containing Lactobacillus acidophilus and Lactobacillus reuteri on Chicken Fillets Shelf Life
Rohullah Kamal(1*), Noorullah Ahmadzai(2), Sayed Rahman Samimi(3)
(1) Animal Science Department, Agriculture Faculty, University of Ghazni
(2) Department of Animal Production, Faculty of Science, University of Kabul
(3) Department of Plant Protection, Faculty of Agriculture, University of Ghazni
(*) Corresponding Author
Abstract
The purpose of this study is to assess how chicken fillet shelf life and sensory evaluation are affected by 1% Gelatin coating containing Lactobacillus acidophilus PTCC 1643 and Lactobacillus reuteri ATCC 1655. Probiotic-containing cultures were introduced straight to the coating solution in this investigation. Measures were taken of the chemical (pH, TVB-N, peroxide value), microbiological (Total viable count (TVC), psychrotrophic count (PTC), Enterobacteriaceae, and Pseudomonas spp.), and sensory properties. During the storage of the chicken fillet, which was kept at 4° C for intervals of 0, 3, 6, 9, and 12 days, the antimicrobial properties of the coating in the groups treated with gelatin, Lactobacillus acidophilus, and Lactobacillus reuteri were significantly (p<0.05) higher than those in the control groups, despite the fact that the results showed the highest chemical properties and sensory score across all parameters. However, gelatin + Lactobacillus reuteri and gelatin + Lactobacillus acidophilus did not differ significantly (p<0.05). Additionally, samples treated with gelatin and probiotics showed no changes in color or texture, but their odor and taste scores decreased. We draw the conclusion that gelatin is an appropriate matrix for probiotic incorporation and long-term fillet storage.
Keywords
Full Text:
PDFReferences
Antoniewski, M. N., Barringer, S. A., Knipe, C. L., & Zerby, H. N. (2007). Effect of a gelatin coating on the shelf life of fresh meat. Journal of Food Science, 72(6), E382-E387. https://doi.org/10.1111/j.1750-3841.2007.00430.x
Balamatsia, C. C., Rogga, K., Badeka, A., Kontominas, M. G., & Savvaidis, I. N. (2006). Effect of low-dose radiation on microbiological, chemical, and sensory characteristics of chicken meat stored aerobically at 4 C. Journal of Food Protection, 69(5), 1126-1133. https://doi.org/10.4315/
0362-028x-69.5.1126
Biscarat, J., Charmette, C., Sanchez, J., & Pochat‐Bohatier, C. (2015). Development of a new family of food packaging bioplastics from cross‐linked gelatin-based films. The Canadian Journal of Chemical Engineering, 93(2), 176-182. https://doi.org/10.1002/cjce.22077
Caplice, E., & Fitzgerald, G. F. (1999). Food fermentations: role of microorganisms in food production and preservation. International journal of food microbiology, 50(1-2), 131-149. https://doi.org/
10.1016/S0168-1605(99)00082-3
Chouliara, E., Karatapanis, A., Savvaidis, I. N., & Kontominas, M. G. (2007). Combined effect of oregano essential oil and modified atmosphere packaging on shelf-life extension of fresh chicken breast meat, stored at 4 C. Food Microbiology, 24(6), 607-617. https://doi.org/10.1016/
j.fm.2006.12.005
Chaijan, M., Benjakul, S., Visessanguan, W., & Faustman, C. (2005). Changes of pigments and color in sardine (Sardinella gibbosa) and mackerel (Rastrelliger kanagurta) muscle during iced storage. Food Chemistry, 93(4), 607–617. https://doi.org/10.1016/
j.foodchem.2004.10.035
Concha-Meyer, A., Schöbitz, R., Brito, C., & Fuentes, R. (2011). Lactic acid bacteria in an alginate film inhibit Listeria monocytogenes growth on smoked salmon. Food Control, 22(3-4), 485-489. https://doi.org/10.1016/
j.foodcont.2010.09.032
Demers, M., Dagnault, A., & Desjardins, J. (2014). A randomized double-blind controlled trial: impact of probiotics on diarrhea in patients treated with pelvic radiation. Clinical nutrition, 33(5), 761-767. https://doi.
org/10.1016/j.clnu.2013.10.015
Espitia, P. J., Batista, R. A., Azeredo, H. M., & Otoni, C. G. (2016). Probiotics and their potential applications in active edible films and coatings. Food Research International, 90, 42-52. https://doi.org/10.1016/
j.foodres.2016.10.026
Fan, W., Chi, Y., & Zhang, S. (2008). The use of a tea polyphenol dip to extend the shelf life of silver carp (Hypophthalmicthys molitrix) during storage in ice. Food Chemistry, 108(1), 148-153. https://doi.org/10.
1016/j.foodchem.2007.10.057
Gómez-Estaca, J., De Lacey, A. L., López-Caballero, M. E., Gómez-Guillén, M. C., & Montero, P. (2010). Biodegradable gelatin–chitosan films incorporated with essential oils as antimicrobial agents for fish preservation. Food microbiology, 27(7), 889-896. https://doi.org/10.1016/j.fm.2010.05.012
Gómez-Guillén, M. C., Giménez, B., López-Caballero, M. A., & Montero, M. P. (2011). Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food hydrocolloids, 25(8), 1813-1827. https://doi.org/10.1016/j.foodhyd.2011.02.007
Gómez-Estaca, J., Montero, P., Giménez, B., & Gómez-Guillén, M. C. (2007). Effect of functional edible films and high-pressure processing on microbial and oxidative spoilage in cold-smoked sardine (Sardina pilchardus). Food Chemistry, 105(2), 511-520. https://doi.org/10.1016/
j.foodchem.2007.04.006
Guimaraes, A., Abrunhosa, L., Pastrana, L. M., & Cerqueira, M. A. (2018). Edible films and coatings as carriers of living microorganisms: A new strategy towards biopreservation and healthier foods. Comprehensive Reviews in Food Science and Food Safety, 17(3), 594-614. https://doi.org/
10.1111/1541-4337.12345
Jouki, M., Yazdi, F. T., Mortazavi, S. A., Koocheki, A., & Khazaei, N. (2014). Effect of quince seed mucilage edible films incorporated with oregano or thyme essential oil on shelf life extension of refrigerated rainbow trout fillets. International journal of food microbiology, 174, 88-97. https://doi.org/10.1016/j.ijfoodmicro.2014.01.001
De Lacey, A. L., López-Caballero, M. E., Gómez-Estaca, J., Gómez-Guillén, M. C., & Montero, P. (2012). Functionality of Lactobacillus acidophilus and Bifidbacterium bifidum incorporated to edible coatings and films. Innovative Food Science & Emerging Technologies, 16, 277-282. https://doi.org/10.1016/
j.ifset.2012.07.001
Mexis, S. F., Chouliara, E., & Kontominas, M. G. (2012). Shelf life extension of ground chicken meat using an oxygen absorber and a citrus extract. LWT, 49(1), 21–27. https://doi.org/10.1016/j.lwt.2012.04.012
Ouwehand, A. C., DongLian, C., Weijian, X., Stewart, M., Ni, J., Stewart, T., & Miller, L. E. (2014). Probiotics reduce symptoms of antibiotic use in a hospital setting: a randomized dose response study. Vaccine, 32(4), 458-463. https://doi.org/10.1016/j.vaccine.2013.11.053
Parvez, S., Malik, K. A., Ah Kang, S., & Kim, H. Y. (2006). Probiotics and their fermented food products are beneficial for health. Journal of applied microbiology, 100(6), 1171-1185. https://doi.org/10.1111/j.1365-2672.2006.02963.x
Pavli, F., Tassou, C., Nychas, G. J. E., & Chorianopoulos, N. (2018). Probiotic incorporation in edible films and coatings: Bioactive solution for functional foods. International Journal of Molecular Sciences, 19(1), 150. https://doi.org/10.3390/ijms19010150
Petrou, S., Tsiraki, M., Giatrakou, V., & Savvaidis, I. N. (2012). Chitosan dipping or oregano oil treatments, singly or combined on modified atmosphere packaged chicken breast meat. International journal of food microbiology, 156(3), 264-271. https://doi.org/10.1016/
j.ijfoodmicro.2012.04.002
Ranjbar, M., & Azizi, M. H. (2017). Microbial, chemical, and sensorial properties of chicken fillets coated by gelatin-carboxymethyl cellulose film containing essential oil of bene (Pistacia atlantica). Journal of food quality and hazards control, 4(1), 14-19.
Rezaeigolestani, M., Misaghi, A., Khanjari, A., Basti, A. A., Abdulkhani, A., & Fayazfar, S. (2017). Antimicrobial evaluation of novel poly-lactic acid based nanocomposites incorporated with bioactive compounds in-vitro and in refrigerated vacuum-packed cooked sausages. International Journal of Food Microbiology, 260, 1-10. https://doi.org/10.1016/
j.ijfoodmicro.2017.08.006
Rivera-Espinoza, Y., & Gallardo-Navarro, Y. (2010). Non-dairy probiotic products. Food microbiology, 27(1), 1-11. https://doi.org/10.1016/j.fm.2008.06.008
Salem, A. M. (2012). Bio-preservation challenge for shelf-life and safety improvement of minced beef. Global Journal of Biotechnology and Biochemistry, 7(2), 50-60. https://doi.org/10.1016/j.fm.2008.06.008
Sánchez-González, L., Saavedra, J. I. Q., & Chiralt, A. (2014). Antilisterial and physical properties of biopolymer films containing lactic acid bacteria. Food Control, 35(1), 200-206. https://doi.org/10.1016/j.foodcont.2013.07.001
Shah, N. P. (2007). Functional cultures and health benefits. International dairy journal, 17(11), 1262-1277. https://doi.org/10.1016/j.idairyj.2007.01.014
Shigematsu, E., Dorta, C., Rodrigues, F. J., Cedran, M. F., Giannoni, J. A., Oshiiwa, M., & Mauro, M. A. (2018). Edible coating with probiotic as a quality factor for minimally processed carrots. Journal of food science and technology, 55, 3712-3720. doi: 10.1007/
s13197-018-3301-0
Soukoulis, C., Behboudi-Jobbehdar, S., Macnaughtan, W., Parmenter, C., & Fisk, I. D. (2017). Stability of Lactobacillus rhamnosus GG incorporated in edible films: Impact of anionic biopolymers and whey protein concentrate. Food hydrocolloids, 70, 345-355. https://doi.org/10.1016/j.foodhyd.2017.04.014
Spinler, J. K., Taweechotipatr, M., Rognerud, C. L., Ou, C. N., Tumwasorn, S., & Versalovic, J. (2008). Human-derived probiotic Lactobacillus reuteri demonstrate antimicrobial activities targeting diverse enteric bacterial pathogens. Anaerobe, 14(3), 166-171. doi: 10.1016/
j.anaerobe.2008.02.001
Tapia, M. S., Rojas‐Graü, M. A., Rodríguez, F. J., Ramírez, J., Carmona, A., & Martin‐Belloso, O. (2007). Alginate‐and gellan‐based edible films for probiotic coatings on fresh‐cut fruits. Journal of food science, 72(4), E190 – E 196. https://doi.org/10.1111/j.1750-3841.2007.00318.x
DOI: https://doi.org/10.22146/ifnp.88614
Article Metrics
Abstract views : 150 | views : 100Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Food and Nutrition Progress (print ISSN 0854-6177, online ISSN 2597-9388) is published by the Indonesian Association of Food Technologist in collaboration with Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada.
Journal of Indonesian Food and Nutrition Progress have been indexed by:
This works is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.