Structural, Electronic, Elastic, and Optical Properties of Cubic BaLiX3 (X = F, Cl, Br, or I) Perovskites: An Ab-initio DFT Study

https://doi.org/10.22146/ijc.83261

Redi Kristian Pingak(1*), Soukaina Bouhmaidi(2), Larbi Setti(3), Bartholomeus Pasangka(4), Bernandus Bernandus(5), Hadi Imam Sutaji(6), Fidelis Nitti(7), Meksianis Zadrak Ndii(8)

(1) Department of Physics, Faculty of Sciences and Engineering, Universitas Nusa Cendana
(2) Laboratory of Advanced Science and Technologies, FPL, Abdelmalek Essaadi University, Morocco
(3) Laboratory of Advanced Science and Technologies, FPL, Abdelmalek Essaadi University, Morocco
(4) Department of Physics, Faculty of Sciences and Engineering, Universitas Nusa Cendana
(5) Department of Physics, Faculty of Sciences and Engineering, Universitas Nusa Cendana
(6) Department of Physics, Faculty of Sciences and Engineering, Universitas Nusa Cendana
(7) Department of Chemistry, Faculty of Sciences and Engineering, Universitas Nusa Cendana
(8) Department of Mathematics, Faculty of Sciences and Engineering, Universitas Nusa Cendana
(*) Corresponding Author

Abstract


This study reports for the first time the theoretical prediction of structural, electronic, elastic and optical properties of cubic BaLiCl3, BaLiBr3, and BaLiI3 perovskites. The corresponding properties of the well-known BaLiF3 are also theoretically investigated. Density Functional Theory (DFT) using the Generalized Gradient Approximation (GGA) was implemented within the Quantum Espresso package to investigate the properties of the perovskites. The results revealed that BaLiX3 (X = F, Cl, Br, and I) are in ionic crystal forms with optimized lattice parameters of 4.04, 4.90, 5.21, and 5.66 Å, respectively. The minor band gaps were found to be 6.62 eV (Γ→Γ), 4.29 eV (R→Γ), 3.50 eV (R→Γ), and 2.58 eV (R→Γ) for the respective compounds. The investigation of their elastic properties indicated that these perovskites are all mechanically stable, while only BaLiBr3 and BaLiI3 are malleable. Finally, the studied perovskites exhibit excellent optical properties, including low reflectivity and high absorption in the ultraviolet region. Hence, it is predicted that these perovskites are suitable for various optoelectronic applications involving absorption in the UV region. However, BaLiBr3 and BaLiI3 are more favorable than BaLiF3 and BaLiCl3 to be deposited as thin films due to their flexibility.



Keywords


Density Functional Theory; Quantum Espresso; BaLiX3 perovskites; elastic properties; optoelectronic properties

Full Text:

Full Text PDF


References

[1] Zhang, L., Zhuang, Z., Fang, Q., and Wang, X., 2022, Study on the automatic identification of ABX3 perovskite crystal structure based on the bond-valence vector sum, Materials, 16 (1), 334.

[2] Wang, Y., Tang, Y., Jiang, J., Zhang, Q., Sun, J., Hu, Y., Cui, Q., Teng, F., Lou, Z., and Hou, Y., 2020, Mixed-dimensional self-assembly organic–inorganic perovskite microcrystals for stable and efficient photodetectors, J. Mater. Chem. C, 8 (16), 5399–5408.

[3] Roknuzzaman, M., Alarco, J.A., Wang, H., Du, A., Tesfamichael, T., and Ostrikov, K., 2019, Ab initio atomistic insights into lead-free formamidinium based hybrid perovskites for photovoltaics and optoelectronics, Comput. Mater. Sci., 169, 109118.

[4] Roknuzzaman, M., Ostrikov, K., Wang, H., Du, A., and Tesfamichael, T., 2017, Towards lead-free perovskite photovoltaics and optoelectronics by ab-initio simulations, Sci. Rep., 7, 14025.

[5] Tao, Q., Xu, P., Li, M., and Lu, W., 2021, Machine learning for perovskite materials design and discovery, npj Comput Mater., 7, 23.

[6] Veldhuis, S.A., Boix, P.P., Yantara, N., Li, M., Sum, T.C., Mathews, N., and Mhaisalkar, S.G., 2016, Perovskite materials for light-emitting diodes and lasers, Adv. Mater., 28 (32), 6804–6834.

[7] Li, L., Tian, G., Chang, W., Yan, Y., Ling, F., Jiang, S., Xiang, G., and Zhou, X., 2020, A novel double-perovskite LiLaMgTeO6:Mn4+ far-red phosphor for indoor plant cultivation white LEDs: Crystal and electronic structure, and photoluminescence properties, J. Alloys Compd., 832, 154905.

[8] Ekström, E., le Febvrier, A., Bourgeois, F., Lundqvist, B., Palisaitis, J., Persson, P.O.A., Caballero-Calero, O., Martín-González, M.S., Klarbring, J., Simak, S.I., Eriksson, F., Paul, B., and Eklund, P., 2020, The effects of microstructure, Nb content and secondary Ruddlesden–Popper phase on thermoelectric properties in perovskite CaMn1−xNbxO3 (x = 0-0.10) thin films, RSC Adv., 10 (13), 7918–7926.

[9] Sydorchuk, V. Lutsyuk, I., Shved, V., Hreb, V., Kondyr, A., Zakutevskyy, O., and Vasylechko, L., 2020, PrCo1−xFexO3 perovskite powders for possible photocatalytic applications, Res. Chem. Intermed., 46 (3), 1909–1930.

[10] Korba, S.A., Meradji, H., Ghemid, S., and Bouhafs, B., 2009, First principles calculations of structural, electronic and optical properties of BaLiF3, Comput. Mater. Sci., 44 (4), 1265–1271.

[11] Boumriche, A., Gesland, J.Y., Bulou, A., Rousseau, M., Fourquet, J.L., and Hennion, B., 1994, Structure and dynamics of the inverted perovskite BaLiF3, Solid State Commun., 91 (2), 125–128.

[12] Düvel, A., Wilkening, M., Uecker, R., Wegner, S., Šepelák, V., and Heitjans, P., 2010, Mechanosynthesized nanocrystalline BaLiF3: The impact of grain boundaries and structural disorder on ionic transport, Phys. Chem. Chem. Phys., 12 (37), 11251–11262.

[13] Mishra, A.K., Garg, N., Shanavas, K.V., Achary, S.N., Tyagi, A.K., and Sharma, S.M., 2011, High pressure structural stability of BaLiF3, J. Appl. Phys., 110 (12), 123505.

[14] Mubarak, A.A., and Mousa, A.A., 2012, The electronic and optical properties of the fluoroperovskite BaXF3 (X = Li, Na, K, and Rb) compounds, Comput. Mater. Sci., 59, 6–13.

[15] Mousa, A.A., Mahmoud, N.T., and Khalifeh, J.M., 2013, The electronic and optical properties of the fluoroperovskite XLiF3 (X = Ca, Sr, and Ba) compounds, Comput. Mater. Sci., 79, 201–205.

[16] Yalcin, B.G., Salmankurt, B., and Duman, S., 2016, Investigation of structural, mechanical, electronic, optical, and dynamical properties of cubic BaLiF3, BaLiH3 and SrLiH3, Mater. Res. Express, 3, 036301.

[17] Lv, Z.L., Cui, H.L., Wang, H., Li, X.H., and Ji, G.F., 2016, Electronic and elastic properties of BaLiF3 with pressure effects: First principles study, Phys. Status Solidi B, 253 (9), 1788–1794.

[18] Chowdhury, N., Riesen, N., and Riesen, H., 2019, Efficient generation of stable Sm2+ in nanocrystalline BaLiF3:Sm3+ by UV- and X-irradiation, J. Phys. Chem. C, 123 (41), 25477–25481.

[19] Song, X., Zhao, Y., Wang, X., Ni, J., Meng, S., and Dai, Z., 2023, Strong anharmonicity and high thermoelectric performance of cubic thallium-based fluoride perovskites TlXF3 (X = Hg, Sn, Pb), Phys. Chem. Chem. Phys., 25 (7), 5776–5784.

[20] Huang, Y.T., Kavanagh, S.R., Scanlon, D.O., Walsh, A., and Hoye, R.L.Z., 2021, Perovskite-inspired materials for photovoltaics and beyond-from design to devices, Nanotechnology, 32 (13), 132004.

[21] Pingak, R.K., 2022, A DFT study of structural and electronic properties of cubic thallium based fluoroperovskites TlBF3 (B = Ge, Sn, Pb, Zn, Cd, Hg, Mg, Ca, Sr, Ba), Comput. Condens. Matter, 33, e00747.

[22] Lynn, M.O., Ologunagba, D., Dangi, B.B., and Kattel, S., 2023, Density functional theory study of bulk properties of transition metal nitrides, Phys. Chem. Chem. Phys., 25 (6), 5156–5163.

[23] Sholihun, S., Kadarisman, H.P., and Nurwantoro, P., 2018, Density-functional-theory calculations of formation energy of the nitrogen-doped diamond, Indones. J. Chem., 18 (4), 749–754.

[24] Hutama, A.S., Marlina, L.A., Chou, C.P., Irle, S., and Hofer, T.S., 2021, Development of density-functional tight-binding parameters for the molecular dynamics simulation of zirconia, yttria, and yttria-stabilized zirconia, ACS Omega, 6 (31), 20530–20548.

[25] Hauwali, N.U.J., Syuhada, I., Rosikhin, A., and Winata, T., 2021, Fundamental properties of parallelogram graphene nanoflakes: A first principle study, Mater. Today: Proc., 44, 3305–3308.

[26] Prasetyo, N., and Pambudi, F.I., 2021, Toward hydrogen storage material in fluorinated zirconium metal-organic framework (MOF-801): A periodic density functional theory (DFT) study of fluorination and adsorption, Int. J. Hydrogen Energy, 46 (5), 4222–4228.

[27] Hutama, A.S., Huang, H., and Kurniawan, Y.S., 2019, Investigation of the chemical and optical properties of halogen-substituted N-methyl-4-piperidone curcumin analogs by density functional theory calculations, Spectrochim. Acta, Part A, 221, 117152.

[28] Pradipta, M.F., Pranowo, H.D., Alfiyah, V., and Hutama, A.S., 2021, Theoretical study of oxygen atom adsorption on a polycyclic aromatic hydrocarbon using density-functional theory, Indones. J. Chem., 21 (5), 1072–1085.

[29] Hutama, A.S., Hijikata, Y., and Irle, S., 2017, Coupled cluster and density functional studies of atomic fluorine chemisorption on coronene as model systems for graphene fluorination, J. Phys. Chem. C, 121 (27), 14888–14898.

[30] Amalia, W., Nurwantoro, P., and Sholihun, S., 2018, Density-functional-theory calculations of structural and electronic properties of vacancies in monolayer hexagonal boron nitride (h-BN), Comput. Condens. Matter, 18, e00354.

[31] Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Dal Corso, A., Stefano, de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P., and Wentzcovitch, R.M., 2009, QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter, 21 (39), 395502.

[32] Perdew, J.P., Burke, K., and Ernzerhof, M., 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77 (18), 3865–3868.

[33] Pitriana, P., Wungu, T.D.K., Herman, H., and Hidayat, R., 2019, The characteristics of band structures and crystal binding in all-inorganic perovskite APbBr3 studied by the principle calculations using the density functional theory (DFT) method, Results Phys., 15, 102592.

[34] Behzadi, P., Ketabi, S.A., and Amiri, P., 2021, First-principles investigation of the electronic and optical properties of As2GeTe nanotubes, Solid State Commun., 336, 114421.

[35] Johannes, A.Z., 2018, Simulasi perubahan densitas muatan adsorpsi atom hydrogen-grafena dengan teori fungsi kerapatan, JFiSA, 3 (2), 179–184.

[36] Birch, F., 1947, Finite elastic strain of cubic crystals, Phys. Rev., 71 (11), 809–824.

[37] Zhuravlev, K.K., 2007, PbSe vs. CdSe: Thermodynamic properties and pressure dependence of the band gap, Phys. B, 394 (1), 1–7.

[38] Hastuti, D.P., Nurwantoro, P., and Sholihun, S., 2019, Stability study of germanene vacancies: The first-principles calculations, Mater. Today Commun., 19, 459–463.

[39] Vaitheeswaran, G., Kanchana, V., Zhang, X., Ma, Y., Svane, A., and Christensen, N.E., 2016, Calculated high-pressure structural properties, lattice dynamics and quasi particle band structures of perovskite fluorides KZnF3, CsCaF3 and BaLiF3, J. Phys.: Condens. Matter, 28 (31), 315403.

[40] Sarukura, N., Murakami, H., Estacio, E., Ono, S., El Ouenzerfi, R., Cadatal, M., Nishimatsu, T., Terakubo, N., Mizuseki, H., Kawazoe, Y., Yoshikawa, A., and Fukuda, T., 2007, Proposed design principle of fluoride-based materials for deep ultraviolet light emitting devices, Opt. Mater., 30 (1), 15–17.

[41] Ghaithan, H.M., Alahmed, Z.A., Qaid, S.M.H., and Aldwayyan, A.S., 2021, Density functional theory analysis of structural, electronic, and optical properties of mixed-halide orthorhombic inorganic perovskites, ACS Omega, 6 (45), 30752–30761.

[42] Chen, K., Schünemann, S., Song, S., and Tüysüz, H., 2018, Structural effects on optoelectronic properties of halide perovskites, Chem. Soc. Rev., 47 (18), 7045–7077.

[43] Ahmad, M., Rehman, G., Ali, L., Shafiq, M., Iqbal, R., Ahmad, R., Khan, T., Jalali-Asadabadi, S., Maqbool, M., and Ahmad, I., 2017, Structural, electronic and optical properties of CsPbX3 (X = Cl, Br, I) for energy storage and hybrid solar cell applications, J. Alloys Compd., 705, 828–839.

[44] Chen, Y., Feng, Z., Pal, A., and Zhang, J., 2022, Recent progress on the performance of lead-based halide perovskite APbX3 detectors, Phys. Status Solidi A, 219 (9), 2200018.

[45] Thi Han, N., Khuong Dien, V., and Lin, M.F., 2022, Electronic and optical properties of CsGeX3 (X = Cl, Br and I) compounds, ACS Omega, 7 (29), 25210–25218.

[46] Bouhmaidi, S., Marjaoui, A., Talbi, A., Zanouni, M., Nouneh, K., and Setti, L., 2022, A DFT study of electronic, optical and thermoelectric properties of Ge-halide perovskites CsGeX3 (X = F, Cl and Br), Comput. Condens. Matter, 31, e00663.

[47] Hasan, N., Arifuzzaman, M., and Kabir, A., 2022, Structural, elastic, and optoelectronic properties of inorganic cubic FrBX3 (B = Ge, Sn; X = Cl, Br, I) perovskite: The density functional theory approach, RSC Adv., 12 (13), 7961–7972.

[48] Hamideddine, I., Tahiri, N., El Bounagui, O., and Ez-Zahraouy, H., 2022, Ab initio study of structural and optical properties of the halide perovskite KBX3 compound, J. Korean Ceram. Soc., 59, 350–358.

[49] Abdulkareem, N.A., Ilyas, B.M., and Sami, S.A., 2021, A first principle investigation of the non-synthesized cubic perovskite LiGeX3 (X = I, Br, and Cl), Mater. Sci. Semicond. Process., 131, 105858.

[50] Rahman, M.H., Jubair, M., Rahaman, M.Z., Ahasan, M.S., Ostrikov, K., and Roknuzzaman, M., 2022, RbSnX3 (X = Cl, Br, I): Promising lead-free metal halide perovskites for photovoltaics and optoelectronics, RSC Adv., 12 (12), 7497–7505.

[51] Ur Rehman, J., Usman, M., Amjid, S., Sagir, M., Bilal Tahir, M., Hussain, A., Alam, I., Nazir, R., Alrobei, H., Ullah, S., and Assiri, M.A., 2022, First-principles calculations to investigate structural, electronics, optical and elastic properties of Sn-based inorganic Halide-perovskites CsSnX3 (X = I, Br, Cl) for solar cell applications, Comput. Theor. Chem., 1209, 113624.

[52] Hayatullah, H., Murtaza, G., Muhammad, S., Naeem, S., Khalid, M.N., and Manzar, A., 2013, Physical properties of CsSnM3 (M = Cl, Br, I): A first principle study, Acta Phys. Pol. A, 124 (1), 102–107.

[53] Rashid, M.A., Saiduzzaman, M., Biswas, A., and Hossain, K.M., 2022, First-principles calculations to explore the metallic behavior of semiconducting lead-free halide perovskites RbSnX3 (X = Cl, Br) under pressure, Eur. Phys. J. Plus, 137, 649.

[54] Saiduzzaman, M., Ahmed, T., Hossain, K.M., Biswas, A., Mitro, S.K., Sultana, A., Alam, M.S., and Ahmad S., 2023, Band gap tuning of non-toxic Sr-based perovskites CsSrX3 (X = Cl, Br) under pressure for improved optoelectronic applications, Mater. Today Commun., 34, 105188.

[55] Harbi, A., and Moutaabbid, M., 2022, Thermoelectric and optoelectronic properties of novel lead-free halide perovskites CsRbTiX6 (X= I, Br and Cl) for photovoltaic applications, Comput. Condens. Matter, 32, e00733.

[56] Zelai, T., Rouf, S.A., Mahmood, Q., Bouzgarrou, S., Amin, M.A., Aljameel, A.I., Ghrib, T., Hegazy, H.H., and Mera, A., 2022, First-principles study of lead-free double perovskites Ga2PdX6 (X = Cl, Br, and I) for solar cells and renewable energy, J. Mater. Res. Technol., 16, 631–639.

[57] Sharma, R., Dey, A., Ahmed Dar, S., and Srivastava, V., 2021, A DFT investigation of CsMgX3 (X = Cl, Br) halide perovskites: Electronic, thermoelectric and optical properties, Comput. Theor. Chem., 1204, 113415.

[58] Mousa, A.A., Abu-Jafar, M.S., Dahliah, D., Shaltaf, R.M., and Khalifeh, J.M., 2018, Investigation of the perovskite KSrX3 (X = Cl and F) compounds, examining the optical, elastic, electronic and structural properties: FP-LAPW study, J. Electron. Mater., 47 (1), 641–650.

[59] Mahmood, Q., Hedhili, F., Al-Shomar, S., Chebaaneef, S., Al-Muhimeed, T.I., AlObaid, A., Mera, A., and Alamri, O.A., 2021, Electronic, optical, and transport properties of RbYbX3 (X = Cl, Br) for solar cells and renewable energy: A quantum DFT study, Phys Scr., 96, 095806.

[60] Moreira, R.L., and Dias, A., 2007, Comment on “Prediction of lattice constant in cubic perovskites”, J. Phys. Chem. Solids, 68 (8), 1617–1622.

[61] Trots, D.M., and Myagkota, S.V., 2008, High-temperature structural evolution of caesium and rubidium triiodoplumbates, J. Phys. Chem. Solids, 69 (10), 2520–2526.

[62] Tang, Y, Zhang, J., Zhong, X., Wang, Q., Zhang, H., Ren, C., and Wang, J., 2019, Revealing the structural, electronic and optical properties of lead-free perovskite derivatives of Rb2SnX6 (X = Cl, Br and I): A theory calculation, Sol. Energy, 190, 272–277.

[63] Aslam, F., Ullah, H., and Hassan, M., 2021, Theoretical investigation of Cs2InBiX6 (X = Cl, Br, I) double perovskite halides using first-principle calculations, Mater. Sci. Eng., B, 274, 115456.

[64] Saeed, M., Ul Haq, I., Ur Rehman, S., Ali, A., Shah, W.A., Ali, Z., Khan, Q., and Khan, I., 2021, Optoelectronic and elastic properties of metal halides double perovskites Cs2InBiX6 (X = F, Cl, Br, I), Chin. Opt. Lett., 19 (3), 030004.

[65] Saeed, M., Ul Haq, I., Saleemi, A.S., Ur Rehman, S., Ul Haq, B., Chaudhry, A.R., and Khan, I., 2022, First-principles prediction of the ground-state crystal structure of double-perovskite halides Cs2AgCrX6 (X = Cl, Br, and I), J. Phys. Chem. Solids, 160, 110302.

[66] Iqbal, S., Mustafa, G.M., Asghar, M., Noor, N.A., Iqbal, M.W., Mahmood, A., and Shin, Y.H., 2022, Tuning the optoelectronic and thermoelectric characteristics of narrow bandgap Rb2AlInX6 (X = Cl, Br, I) double perovskites: A DFT study, Mater. Sci. Semicond. Process., 143, 106551.

[67] Albalawi, H., Mustafa, G.M., Saba, S., Kattan, N.A., Mahmood, Q., Somaily, H.H., Morsi, M., Alharthi, S., and Amin, M.A., 2022, Study of optical and thermoelectric properties of double perovskites Cs2KTlX6 (X = Cl, Br, I) for solar cell and energy harvesting, Mater. Today Commun., 32, 104083.

[68] Alotaibi, N.H., Mustafa, G.M., Kattan, N.A., Mahmood, Q., Albalawi, H., Morsi, M., Somaily, H.H., Hafez, M.A., Mahmoud, H.I., and Amin, M.A., 2022, DFT study of double perovskites Cs2AgBiX6 (X = Cl, Br): An alternative of hybrid perovskites, J. Solid State Chem., 313, 123353.

[69] Niaz, S., Khan, M.A., Noor, N.A., Ullah, H., and Neffati, R., 2022, Bandgap tuning and thermoelectric characteristics of Sc-based double halide perovskites K2ScAgZ6 (Z = Cl, Br, I) for solar cells applications, J. Phys. Chem. Solids, 174, 111115.

[70] Johnson, A., Gbaorun, F., and Ikyo, B.A., 2022, First-principles study of (CsMA)NaSbX6 (MA = methylammonium; X = Cl, Br, I) organic–inorganic hybrid double perovskites for optoelectronic applications, J. Comput. Electron., 21 (1), 34–39.

[71] Khan, M.A., Alburaih, H.A., Noor, N.A., and Dahshan, A., 2021, Comprehensive investigation of opto-electronic and transport properties of Cs2ScAgX6 (X = Cl, Br, I) for solar cells and thermoelectric applications, Sol. Energy, 225, 122–128.

[72] Choudhary, S., Tomar, S., Kumar, D., Kumar, S., and Verma, A.S., 2021, Investigations of lead free halides in sodium based double perovskites Cs2NaBiX6 (X = Cl, Br, I): An ab initio study, East Eur. J. Phys., 3, 74–80.

[73] Behera, D., and Mukherjee, S.K., 2022, Optoelectronics and transport phenomena in Rb2InBiX6 (X = Cl, Br) compounds for renewable energy applications: A DFT insight, Chemistry, 4 (3), 1044–1059.

[74] Kattan, N.A., Mahmood, Q., Nazir, G., Rehman, A., Sfina, N., Al-anazy, M.M., Sofi, S.A., Morsi, M., and Amin, M.A., 2023, Modifying electronic bandgap by halide ions substitution to investigate double perovskites Rb2AgInX6 (X = Cl, Br, I) for solar cells applications and thermoelectric characteristics, Mater. Today Commun., 34, 105166.

[75] Ye, X., Liu, A., Zhao, Y., Han, Q., Kitamura, T., and Ma, T., 2022, DFT study of X-site ion substitution doping of Cs2PtX6 on its structural and electronic properties, Int. J. Energy Res., 46 (6), 8471–8479.

[76] Al-Muhimeed, T.I., Alzahrani, J., Rouf, S.A., Al-Qaisi, S., Anbarasan, R., Mahmood, Q., Albalawi, H., Alharthi, S., Amin, M.A., and Somaily, H.H., 2022, Tuning of band gap by anion variation of Ga2TiX6 (X = Cl, Br, I) for solar cells and renewable energy, Phys. Scr., 97 (8), 085815.

[77] Bhamu, K.C., Soni, A., and Sahariya, J., 2018, Revealing optoelectronic and transport properties of potential perovskites Cs2PdX6 (X = Cl, Br): A probe from density functional theory (DFT), Sol. Energy, 162, 336–343.

[78] Younas, M., Mahmood, Q., Kattan, N., Alshahrani, T., Mera, A., Mersal, G.A.M., Amin, M., and Somaily, H.H., 2022, Study of new double perovskites Tl2PtX6 (X = Cl, Br, I) for solar cells and thermoelectric applications, Phys. Scr., 97 (12), 125803.

[79] Albalawi, H., Nazir, G., Younas, M., Al-Qaisi, S., Ashiq, M.G.B., Alzahrani, J., Somaily, H.H., Morsi, M., and Ghrib, T., 2022, Study of lead-free vacancy ordered double perovskites Cs2TeX6 (X = Cl, Br, I) for solar cells, and renewable energy, Phys. Scr., 97, 095801.

[80] Mahmood, Q., Nazir, G., Bouzgarrou, S., Aljameel, A.I., Rehman, A., Albalawi, H., Ul Haq, B., Ghrib, T., and Mera, A., 2022, Study of new lead-free double perovskites halides Tl2TiX6 (X = Cl, Br, I) for solar cells and renewable energy devices, J. Solid State Chem., 308, 122887.

[81] Callister, W.D., and Rethwisch, D.G., 2018, Fundamentals of Materials Science and Engineering, 5th Ed., John Wiley and Sons Inc., Hoboken, NJ, USA.

[82] Bouhmaidi, S., Azouaoui, A., Benzakour, N., Hourmatallah, A., and Setti, L., 2022, First principles calculations on structural, electronic, elastic, optical, and thermoelectric properties of thallium based chloroperovskites TlMCl3 (M = Zn and Cd), Comput. Condens. Matter, 33, e00756.

[83] Born, M., 1940, On the stability of crystal lattices, Math. Proc. Cambridge Philos. Soc., 36 (2), 160–172.

[84] Reddy, R.R., Gopal, K.R., Narasimhulu, K., Reddy, L.S.S., Kumar, K.R., Balakrishnaiah, G., and Kumar, M.R., 2009, Interrelationship between structural, optical, electronic and elastic properties of materials, J. Alloys Compd., 473 (1-2), 28–35.

[85] Li, K., Kang, C., and Xue, D., 2012, Electronegativity calculation of bulk modulus and band gap of ternary ZnO-based alloys, Mater. Res. Bull., 47 (10), 2902–2905.

[86] Song, Z., Fan, W., Tan, C.S., Wang, Q., Nam, D., Zhang, D.H., and Sun, G., 2019, Band structure of Ge1−xSnx alloy: A full-zone 30-band k·p model, New J. Phys., 21 (7), 073037.

[87] Pugh, S.F., 1954, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Lond. Edinb. Dubl. Phil. Mag., 45 (367), 823–843.

[88] Krishnamoorthy, T., Ding, H., Yan, C., Leong, W.L., Baikie, T., Zhang, Z., Sherburne, M., Li, S., Asta, M., Mathews, N., and Mhaisalkar, S.G., 2015, Lead-free germanium iodide perovskite materials for photovoltaic applications, J. Mater. Chem. A, 3 (47), 23829–23832.

[89] Mattesini, M., Magnuson, M., Tasnádi, F., Höglund, C., Abrikosov, I.A., and Hultman, L., 2009, Elastic properties and electrostructural correlations in ternary scandium-based cubic inverse perovskites: A first-principles study, Phys. Rev. B, 79 (12), 125122.

[90] Shah, M.A.H., Nuruzzaman, M., Hossain, A., Jubair, M., and Zilani, M.A.K., 2023, A DFT insight into structural, mechanical, elasto-acoustic, and anisotropic properties of AePdH3 (Ae = Ca, Sr, Ba) perovskites under pressure, Comput. Condens. Matter, 34, e00774.

[91] Ghebouli, B., Ghebouli, M.A., Bouhemadou, A., Fatmi, M., Khenata, R., Rached, D., Ouahrani, T., and Bin-Omran, S., 2012, Theoretical prediction of the structural, elastic, electronic, optical and thermal properties of the cubic perovskites CsXF3 (X = Ca, Sr and Hg) under pressure effect, Solid State Sci., 14 (7), 903–913.

[92] Bakar, A., Alrashdi, A.O., Fadhali, M.M., Afaq, A., Yakout H.A., and Asif, M., 2022, Effect of pressure on structural, elastic and mechanical properties of cubic perovskites XCoO3 (X = Nd, Pr) from first-principles investigations, J. Mater. Res. Technol., 19, 4233–4241.

[93] Erum, N., and Iqbal, M.A., 2020, Elastomechanical and magneto-optoelectronic investigation of RbCoF3: An ab initio DFT study, Acta Phys. Pol., A, 138 (3), 509–517.

[94] Mubarak, A.A., and Al-Omari, S., 2015, First-principles calculations of two cubic fluoroperovskite compounds: RbFeF3 and RbNiF3, J. Magn. Magn. Mater., 382, 211–218.

[95] El Amine Monir, M., and Dahou, F.Z., 2020, Structural, thermal, elastic, electronic and magnetic properties of cubic lanthanide based perovskites type oxides PrXO3 (X = V, Cr, Mn, Fe): Insights from ab initio study, SN Appl. Sci., 2 (3), 465.

[96] Cherif, Y.B., Rouaighia, M., Zaoui, A., and Boukortt, A., 2017, Optoelectronic, elastic and thermal properties of cubic perovskite-type SrThO3, Acta Phys. Pol., A, 131 (3), 406–413.

[97] Råsander, M., and Moram, M.A., 2015, On the accuracy of commonly used density functional approximations in determining the elastic constants of insulators and semiconductors, J. Chem. Phys., 143 (14), 144104.

[98] Green, M.A., Jiang, Y., Soufiani, A.M., and Ho-Baillie, A., 2015, Optical properties of photovoltaic organic-inorganic lead halide perovskites, J. Phys. Chem. Lett., 6 (23), 4774–4785.

[99] Ambrosch-Draxl, C., and Sofo, J.O., 2006, Linear optical properties of solids within the full-potential linearized augmented plane wave method, Comput. Phys. Commun., 175 (1), 1–14.

[100] Alam, M.S., Saiduzzaman, M., Biswas, A., Ahmed, T., Sultana, A., and Hossain, K.M., 2022, Tuning band gap and enhancing optical functions of AGeF3 (A = K, Rb) under pressure for improved optoelectronic applications, Sci. Rep., 12 (1), 8663.

[101] Penn, D.R., 1962, Wave-number-dependent dielectric function of semiconductors, Phys. Rev., 128 (5), 2093–2097.

[102] Rahaman, M.Z., and Hossain, A.K.M.A., 2018, Effect of metal doping on the visible light absorption, electronic structure and mechanical properties of non-toxic metal halide CsGeCl3, RSC Adv., 8 (58), 33010–33018.

[103] Biswas, A., Alam, M.S., Sultana, A., Ahmed, T., Saiduzzaman, M., and Hossain, K.M., 2021, Effects of Bi and Mn codoping on the physical properties of barium titanate: investigation via DFT method, Appl. Phys. A: Mater. Sci. Process., 127 (12), 939.

[104] Bouhmaidi, S., Pingak, R.K., Azouaoui, A., Harbi, A., Moutaabbid, M., and Setti, L., 2023, Ab initio study of structural, elastic, electronic, optical and thermoelectric properties of cubic Ge-based fluoroperovskites AGeF3 (A = K, Rb and Fr), Solid State Commun., 369, 115206.



DOI: https://doi.org/10.22146/ijc.83261

Article Metrics

Abstract views : 3627 | views : 1701


Copyright (c) 2023 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.