Removal of Heavy Metal Ions Using Pristine and Functionalized Natural Zeolites
Khoirul Ihsan Solihin(1), St Mardiana(2), Handajaya Rusli(3), Grandprix Thomryes Marth Kadja(4*)
(1) Division of Analytical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
(2) Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
(3) Division of Analytical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
(4) Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia; Center for Catalysis and Reaction Engineering, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia; Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
(*) Corresponding Author
Abstract
Heavy metal ions have attracted significant concern regarding their toxicity in living organisms. Concurrently, the removal of heavy metals by the adsorption method is also under the spotlight because it is effective, less cost-demanding, and easy to operate. To date, natural zeolites become one of the most used adsorbents for it is low cost, abundant in reserve, and has high selectivity towards heavy metal. Zeolites possess negatively charged three-dimensional frameworks built by SiO4 and AlO4 tetrahedra, which are balanced by counter-cations. The cations within zeolite frameworks can be exchanged with the heavy metal cations in an aqueous environment. This review comprehensively reports the adsorption capacity of heavy metal ions using pristine and modified natural zeolite. The important aspects, including the physicochemical properties of pristine and modified natural zeolites, heavy metal ion adsorption isotherms, kinetics, and thermodynamics, are discussed in detail. It is imperative to note that the physicochemical properties of natural zeolites greatly determine the adsorption capability. Furthermore, natural zeolites could be modified with various molecules such as surfactants and polymers to improve the adsorption capacity and adsorb heavy metal anions. Ultimately, this review is concluded with prospects for future improvement.
Full Text:
Full Text PDFReferences
[1] Gao, Y., Feng, J., Wang, C., and Zhu, L., 2017, Modeling interactions and toxicity of Cu-Zn mixtures to zebrafish larvae, Ecotoxicol. Environ. Saf., 138, 146–153.
[2] Darmayanti, L., Kadja, G.T.M., Notodarmojo, S., Damanhuri, E., and Mukti, R.R., 2019, Structural alteration within fly ash-based geopolymers governing the adsorption of Cu2+ from aqueous environment: Effect of alkali activation, J. Hazard. Mater., 377, 305–314.
[3] Sundari, D., Hananto, M., and Suharjo, S., 2016, Kandungan logam berat dalam bahan pangan di kawasan industri kilang minyak, Dumai, Buletin Penelitian Sistem Kesehatan, 19 (1), 55–61.
[4] Erika, D., Nurdini, N., Mulyani, I., and Kadja, G.T.M., 2023, Amine-functionalized ZSM-5-supported gold nanoparticles as a highly efficient catalyst for the reduction of p-nitrophenol, Inorg. Chem. Commun., 147, 110253.
[5] WHO, 2017, Guidelines for Drinking-water Quality, Fourth Edition Incorporating the First Addendum, World Health Organization, Geneva.
[6] Wan Ngah, W.S., Teong, L.C., Toh, R.H., and Hanafiah, MAKM, 2012, Utilization of chitosan-zeolite composite in the removal of Cu(II) from aqueous solution: Adsorption, desorption and fixed bed column studies, Chem. Eng. J., 209, 46–53.
[7] Gupta, R.K., 2018, A review of copper poisoning in animals: Sheep, goat and cattle, Int. J. Vet. Sci. Anim. Husb., 3 (5), 1–4.
[8] Hoseinifard, S.M., Omidzahir, S., Hoseini, S.M., and Beikaee, H., 2018, Protective effect of garlic (Allium sativum) against zinc poisoning in the testicular tissue of goldfish (Carassius auratus), Comp. Clin. Pathol., 27 (2), 357–361.
[9] Sane, M.R., Malukani, K., Kulkarni, R., and Varun, A., 2018, Fatal iron toxicity in an adult: Clinical profile and review, Indian J. Crit. Care Med., 22 (11), 801–803.
[10] Shen, X., Chi, Y., and Xiong, K., 2019, The effect of heavy metal contamination on humans and animals in the vicinity of a zinc smelting facility, PLoS One, 14 (10), e0207423.
[11] Li, Y., Xu, Z., Liu, S., Zhang, J., and Yang, X., 2017, Molecular simulation of reverse osmosis for heavy metal ions using functionalized nanoporous graphenes, Comput. Mater. Sci., 139, 65–74.
[12] Bashir, A., Malik, L.A., Ahad, S., Manzoor, T., Bhat, M.A., Dar, G.N., and Pandith, A.H., 2019, Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods, Environ. Chem. Lett., 17 (2), 729–754.
[13] Forsido, T., McCrindle, R., Maree, J., and Mpenyana-Monyatsi, L., 2019, Neutralisation of acid effluent from steel manufacturing industry and removal of metals using an integrated electric arc furnace dust slag/lime process, SN Appl. Sci., 1 (12), 1605.
[14] Xu, S., Liu, Y., Yu, Y., Zhang, X., Zhang, J., and Li, Y., 2020, PAN/PVDF chelating membrane for simultaneous removal of heavy metal and organic pollutants from mimic industrial wastewater, Sep. Purif. Technol., 235, 116185.
[15] Masindi, V., and Muedi, K.L., 2018, “Environmental Contamination by Heavy Metals” in Heavy Metals, Eds. Saleh, H.M., and Aglan, R.F., IntechOpen, Rijeka, Croatia, 137–144.
[16] Igiri, B.E., Okoduwa, S.I.R., Idoko, G.O., Akabuogu, E.P., Adeyi, A.O., and Ejiogu, IK, 2018, Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: A review, J. Toxicol., 2018, 2568038.
[17] Naushad, M., Ahamad, T., Al-Maswari, B.M., Abdullah Alqadami, A., and Alshehri, S.M., 2017, Nickel ferrite bearing nitrogen-doped mesoporous carbon as efficient adsorbent for the removal of highly toxic metal ion from aqueous medium, Chem. Eng. J., 330, 1351–1360.
[18] Otunola, B.O., and Ololade, O.O., 2020, A review on the application of clay minerals as heavy metal adsorbents for remediation purposes, Environ. Technol. Innovation, 18, 100692.
[19] Yuna, Z., 2016, Review of the natural, modified, and synthetic zeolites for heavy metals removal from wastewater, Environ. Eng. Sci., 33 (7), 443–454.
[20] Puspitasari, T., Kadja, G.T.M., Radiman, C.L., Darwis, D., and Mukti, R.R., 2018, Two-step preparation of amidoxime-functionalized natural zeolites hybrids for the removal of Pb2+ ions in aqueous environment, Mater. Chem. Phys., 216, 197–205.
[21] Ayangbenro, A.S., and Babalola, O.O., 2017, A new strategy for heavy metal polluted environments: A review of microbial biosorbents, Int. J. Environ. Res. Public Health, 14 (1), 94.
[22] Negm., N.A., Hefni, H.H.H., and Abd-Elaal, A.A., 2017, “Assessment of Agricultural Wastes as Biosorbents for Heavy Metal Ions Removal from Wastewater” in Surfactants in Tribology, Eds. Biresaw, G., and Mittal, K.L., CRC Press, Boca Raton, 465–491.
[23] Qin, H., Hu, T., Zhai, Y., Lu, N., and Aliyeva, J., 2020, The improved methods of heavy metals removal by biosorbents: A review, Environ. Pollut., 258, 113777.
[24] Hela, R., and Orsáková, D., 2013, The mechanical activation of fly ash, Procedia Eng., 65, 87–93.
[25] Kemp, T.J., 2017, A brief 100 year history of carbon, Sci. Prog., 100 (3), 293–298.
[26] Kennedy, K.K., Maseka, K.J., and Mbulo, M., 2018, Selected adsorbents for removal of contaminants from wastewater: Towards engineering clay minerals, Open J. Appl. Sci., 8 (8), 355–369.
[27] Loix, C., Huybrechts, M., Vangronsveld, J., Gielen, M., Keunen, E., and Cuypers, A., 2017, Reciprocal interactions between cadmium-induced cell wall responses and oxidative stress in plants, Front. Plant Sci., 8, 1867.
[28] Król, M., 2020, Natural vs. Synthetic zeolites, Crystals, 10 (7), 622.
[29] Mukaromah, A.H., Kadja, G.T.M., Mukti, R.R., Pratama, I.R., Zulfikar, M.A., and Buchari, B., 2016, Surface-to-volume ratio of synthesis reactor vessel governing low temperature crystallization of ZSM-5, J. Math. Fundam. Sci., 48 (3), 241–251.
[30] Makertihartha, I.G.B.N., Kadja, G.T.M., and Gunawan, M.L., 2020, Exceptional aromatic distribution in the conversion of palm-oil to biohydrocarbon using zeolite-based catalyst, J. Eng. Technol. Sci., 52, 584–597.
[31] Kadja, G.T.M., Rukmana, M.D., Mukti, R.R., Mahyuddin, M.H., Saputro, A.G., and Wungu, T.D.K., 2021, Solvent-free, small organic lactam-assisted synthesis of ZSM-5 zeolites, Mater. Lett., 290, 129501.
[32] Lestari, W.W., Irwinsyah, I., Saraswati, T.E., Krisnandi, Y.K., Arrozi, U.S.F., Heraldy, E., and Kadja, G.T.M., 2020, Composite material consisting of HKUST-1 and Indonesian activated natural zeolite and its application in CO2 capture, Open Chem., 17 (1), 1279–1287.
[33] Lestari, W.W., Yunita, L., Saraswati, T.E., Heraldy, E., Khafidhin, M.A., Krisnandi, Y.K., Arrozi, U.S.F., and Kadja, G.T.M., 2021, Fabrication of composite materials MIL-100(Fe)/Indonesian activated natural zeolite as enhanced CO2 capture material, Chem. Pap., 75 (7), 3253–3263.
[34] Dionisiou, N.S., and Matsi, T., 2016, “Natural and Surfactant-Modified Zeolite for the Removal of Pollutants (Mainly Inorganic) from Natural Waters and Wastewaters” in Environmental Materials and Waste: Resource Recovery and Pollution Prevention, Eds. Prasad, M.N.V., and Shih, K., Academic Press, Cambridge, Massachusetts, US, 591–606.
[35] Rahmah, W., Kadja, G.T.M., Mahyuddin, M.H., Saputro, A.G., Dipojono, H.K., and Wenten, I.G., 2022, Small-pore zeolite and zeotype membranes for CO2 capture and sequestration – A review, J. Environ. Chem. Eng., 10 (6), 108707.
[36] Fajar, A.T.N., Nurdin, F.A., Mukti, R.R., Subagjo, S., Rasrendra, C.B., and Kadja, G.T.M., 2020, Synergistic effect of dealumination and ceria impregnation to the catalytic properties of MOR zeolite, Mater. Today Chem., 17, 100313.
[37] Maghfirah, A., Susanti, Y., Fajar, A.T.N., Mukti, R.R., and Kadja, G.T.M., 2019, The role of tetraalkylammonium for controlling dealumination of zeolite Y in acid media, Mater. Res. Express, 6, 094002.
[38] Kadja, G.T.M., Suprianti, T.R., Ilmi, M.M., Khalil, M., Mukti, R.R., and Subagjo, S., 2020, Sequential mechanochemical and recrystallization methods for synthesizing hierarchically porous ZSM-5 zeolites, Microporous Mesoporous Mater., 308, 110550.
[39] Kadja, G.T.M., Azhari, N.J., Mukti, R.R., and Khalil, M., 2021, A mechanistic investigation of sustainable solvent-free, seed-directed synthesis of ZSM-5 zeolites in the absence of an organic structure-directing agent, ACS Omega, 6 (1), 925–933.
[40] Putra, R., Lestari, W.W., Susanto, B.H., and Kadja, G.T.M., 2022, Green diesel rich product (C-15) from the hydro-deoxygenation of refined palm oil over activated NH4+-Indonesian natural zeolite, Energy Sources, Part A, 44 (3), 7483–7498.
[41] Azhari, N.J., Nurdini, N., Mardiana, S., Ilmi, T., Fajar, A.T.N., Makertihartha, N., and Kadja, G.T.M., 2022, Zeolite-based catalyst for direct conversion of CO2 to C2+ hydrocarbon: A review, J. CO2 Util., 59, 101969.
[42] Baerlocher, C., and McCusker, L., 2021, Database of Zeolite Structures, http://www.iza-structure.org/databases/, accessed on April 18 2021.
[43] Munthali, M.W., Elsheikh, M.A., Johan, E., and Matsue, N., 2014, Proton adsorption selectivity of zeolites in aqueous media: Effect of Si/Al ratio of zeolites, Molecules, 19 (12), 20468–20481.
[44] Gili, M.B., Olegario-Sanchez, L., and Conato, M., 2019, Adsorption uptake of Philippine natural zeolite for Zn2+ ions in aqueous solution, J. Phys.: Conf. Ser., 1191, 012042.
[45] Ören, A.H., and Kaya, A., 2006, Factors affecting adsorption characteristics of Zn2+ on two natural zeolites, J. Hazard. Mater., 131 (1-3), 59–65.
[46] Budianta, W., Andriyani, N.D., Ardiana, A., and Warmada, I.W., 2020, adsorption of lead and cadmium from aqueous solution by Gunungkidul zeolitic tuff, Indonesia, Environ. Earth Sci., 79 (8), 172.
[47] Prajitno, M.Y., Harbottle, D., Hondow, N., Zhang, H., and Hunter, T.N., 2020, The effect of pre-activation and milling on improving natural clinoptilolite for ion exchange of cesium and strontium, J. Environ. Chem. Eng., 8 (1), 102991.
[48] Zanin, E., Scapinello, J., de Oliveira, M., Rambo, C.L., Franscescon, F., Freitas, L., de Mello, J.M.M., Fiori, M.A., Oliveira, J.V., and Dal Magro, J., 2017, adsorption of heavy metals from wastewater graphic industry using clinoptilolite zeolite as adsorbent, Process Saf. Environ. Prot., 105, 194–200.
[49] Obaid, S.S., Gaikwad, D.K., Sayyed, M.I., Al-Rashdi, K., and Pawar, P.P., 2018, Heavy metal ions removal from waste water by the natural zeolites, Mater. Today: Proc., 5 (9 Part 3), 17930–17934.
[50] Belova, T.P., 2019, Adsorption of heavy metal ions (Cu2+, Ni2+, Co2+ and Fe2+) from aqueous solutions by natural zeolite, Heliyon, 5 (9), e02320.
[51] Jorfi, S., Ahmadi, M.J., Pourfadakari, S., Jaafarzadeh, N., Soltani, R.D.C., and Akbari, H., 2017, Adsorption of Cr(VI) by natural clinoptilolite zeolite from aqueous solutions: Isotherms and kinetics, Pol. J. Chem. Technol., 19 (3), 106–114.
[52] Rakhym, A.B., Seilkhanova, G.A., and Kurmanbayeva, T.S., 2020, Adsorption of lead(II) ions from water solutions with natural zeolite and chamotte clay, Mater. Today: Proc., 31 (Part 3), 482–485.
[53] Almjadleh, M., Alasheh, S., and Raheb, I., 2014, Use of natural and modified Jordanian zeolitic tuff for removal of cadmium(II) from aqueous solutions, Jordan J. Civ. Eng., 8 (3), 332–343.
[54] Mihajlović, M.T., Lazarević, S.S., Janković-Častvan, I.M., Jokić, B.M., Janaćković, D.T., and Petrović, R.D., 2014, A comparative study of the removal of lead, cadmium and zinc ions from aqueous solutions by natural and Fe(III)-modified zeolite, Chem. Ind. Chem. Eng. Q., 20 (2), 283–293.
[55] Kovacova, Z., and Pla, C., 2020, A batch study of Ni(II) sorption on natural Slovak zeolite, IOP Conf. Ser.: Mater. Sci. Eng., 867, 012023.
[56] Tedesco, S., Hurst, G., Imtiaz, A., Ratova, M., Tosheva, L., and Kelly, P., 2020, TiO2 supported natural zeolites as biogas enhancers through photocatalytic pre-treatment of Miscanthus x giganteous crops, Energy, 205, 117954.
[57] Fu, H., Li, Y., Yu, Z., Shen, J., Li, J., Zhang, M., Ding, T., Xu, L., and Lee, S.S., 2020, Ammonium removal using a calcined natural zeolite modified with sodium nitrate, J. Hazard. Mater., 393, 122481.
[58] Wahono, S.K., Stalin, J., Addai-Mensah, J., Skinner, W., Vinu, A., and Vasilev, K., 2020, Physico-chemical modification of natural mordenite-clinoptilolite zeolites and their enhanced CO2 adsorption capacity, Microporous Mesoporous Mater., 294, 109871.
[59] Yousefi, T., Moazami, H.R., Mahmudian, H.R., Torab-Mostaedi, M., and Moosavian, M.A., 2018, Modification of natural zeolite for effective removal of Cd(II) from wastewater, J. Water Environ. Nanotechnol., 3 (2), 150–156.
[60] Mirbaloochzehi, M.R., Rezvani, A., Samimi, A., and Shayesteh, M., 2020, Application of a novel surfactant-modified natural nano-zeolite for removal of heavy metals from drinking water, Adv. J. Chem., Sect. A, 3, 612–620.
[61] Yulizar, Y., Utari, T., Apriandanu, D.O.B., and Utami, R., 2020, Adsorption enhancement of heavy metal ions using chitosan-modified natural zeolite nanocomposite, AIP Conf. Proc., 2242, 040057.
[62] Zekavat, S.R., Raouf, F., and Talesh, S.S.A., 2020, Simultaneous adsorption of Cu2+ and Cr (VI) using HDTMA-modified zeolite: Isotherm, kinetic, mechanism, and thermodynamic studies, Water Sci. Technol., 82 (9), 1808–1824.
[63] Dimas Rivera, G.L., Martínez Hernández, A., Pérez Cabello, A.F., Rivas Barragán, E.L., Liñán Montes, A., Flores Escamilla, G.A., Sandoval Rangel, L., Suarez Vazquez, S.I., and De Haro Del Río, DA, 2021, Removal of chromate anions and immobilization using surfactant-modified zeolites, J. Water Process Eng., 39, 101717.
[64] Tran, H.N., Viet, PV, and Chao, H.P., 2018, Surfactant modified zeolite as amphiphilic and dual-electronic adsorbent for removal of cationic and oxyanionic metal ions and organic compounds, Ecotoxicol. Environ. Saf., 147, 55–63.
[65] Kragović, M., Pašalić, S., Marković, M., Petrović, M., Nedeljković, B., Momčilović, M., and Stojmenović, M., 2018, Natural and modified zeolite—alginate composites. Application for removal of heavy metal cations from contaminated water solutions, Minerals, 8 (1), 11.
[66] Shirzadi, H., and Nezamzadeh-Ejhieh, A., 2017, An efficient modified zeolite for simultaneous removal of Pb(II) and Hg(II) from aqueous solution, J. Mol. Liq., 230, 221–229.
[67] Retnaningrum, E., and Wilopo, W., 2017, removal of sulphate and manganese on synthetic wastewater in sulphate reducing bioreactor using Indonesian natural zeolite, Indones. J. Chem., 17 (2), 203–210.
[68] Velazquez-Peña, G.C., Solache-Ríos, M., Olguin, M.T., and Fall, C., 2019, As(V) sorption by different natural zeolite frameworks modified with Fe, Zr and FeZr, Microporous Mesoporous Mater., 273, 133–141.
[69] Nguyen, V.D., Pham, T.T., Vranova, V., Nguyen, H.T.H., Nguyen, L.T.N., Vuong, X.T., and Bui, Q.M., 2020, removal of cadmium from aqueous solution using sonochemically modified clinoptilolite: Optimization and modeling, Environ. Technol. Innovation, 20, 101166.
[70] Nasiri-Ardali, M., and Nezamzadeh-Ejhieh, A., 2020, A comprehensive study on the kinetics and thermodynamic aspects of batch and column removal of Pb(II) by the clinoptilolite–glycine adsorbent, Mater. Chem. Phys., 240, 122142.
[71] Abd El-Azim, H., and Mourad, F., 2018, removal of heavy metals Cd(II), Fe(III) and Ni(II), from aqueous solutions by natural (clinoptilolite) zeolites and application to industrial wastewater, Asian J. Environ. Ecol., 7 (1), 1–13.
[72] Liu, X., Tian, R., Ding, W., He, Y., and Li, H., 2019, Adsorption selectivity of heavy metals by Na-clinoptilolite in aqueous solutions, Adsorption, 25 (4), 747–755.
[73] Saha, D., and Grappe, HA, 2017, “Adsorption Properties of Activated Carbon Fibers” in Activated Carbon Fiber and Textiles, Eds. Chen, J.Y., Woodhead Publishing, Oxford, UK, 143–165.
[74] Sims, R.A., Harmer, S.L., and Quinton, J.S., 2019, The role of physisorption and chemisorption in the oscillatory adsorption of organosilanes on aluminium oxide, Polymers, 11 (3), 410.
[75] Tran, H.N., You, S.J., Hosseini-Bandegharaei, A., and Chao, H.P., 2017, Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review, Water Res., 120, 88–116.
DOI: https://doi.org/10.22146/ijc.81098
Article Metrics
Abstract views : 1843 | views : 1506Copyright (c) 2023 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.