Identification of Volatile Compounds of Oil Palm Flower (Elaeis guineensis Jacq.) with Gas Chromatography and Mass Spectrometry Based on the Difference in Time

https://doi.org/10.22146/ijc.78682

Fizrul Indra Lubis(1), Sudarjat Sudarjat(2), Ichsan Nurul Bari(3), Unang Supratman(4*)

(1) Agricultural Science, Faculty of Agriculture, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia; Sulung Research Station, PT Sawit Sumbermas Sarana Tbk. Citra Borneo Indah Group, Jl. H. Udan Said No. 47, Pangkalan Bun 74113, Indonesia
(2) Department of Plant Pests and Diseases, Faculty of Agriculture, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(3) Department of Plant Pests and Diseases, Faculty of Agriculture, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(*) Corresponding Author

Abstract


The pollination process in oil palm is assisted by the insect Elaeidobius kamerunicus, which occurs when male and female flowers bloom producing volatile compounds that act as attractants. This study aims to identify volatile compounds in oil palm flowers based on differences in times with gas chromatography mass spectrometry (GC-MS). The research steps include determining the time of the release of volatile compounds in oil palm flowers, extracted using steam distillation, and identification by GC-MS. There are different times of the release of volatile compounds for each type of oil palm flower. Three times by male flowers, at 08:00 am, 11:00 am and 14:00 pm, with the highest volatile compounds at 14:00 pm. Meanwhile, female flowers occurred at 09:00 am, 12:00 am and 15:00 pm, with the highest volatile compounds at 12:00 am. The results of the GC-MS analysis showed that 21 and 19 volatile compounds were identified, with a total of 38 different types. Estragole compounds were dominant in both types of flowers and did not show significant differences in the area sum values at each time of observation. These results indicated the importance of estragole compound for the pollination process in oil palm.

Keywords


Elaeis guineensis Jacq.; estragole; palm oil; volatile compounds

Full Text:

Full Text PDF


References

[1] BPS, 2021, Statistik Kelapa Sawit Indonesia 2020, Badan Pusat Statistik, Jakarta, 20–25.

[2] Lubis, F.I., Sudarjat, S., and Dono D., 2017, Populasi serangga penyerbuk kelapa sawit Elaeidobius kamerunicus Faust dan pengaruhnya terhadap nilai fruit set pada tanah berliat, berpasir dan gambut di Kalimantan Tengah, Indonesia, Jurnal Agrikultura, 28 (1), 39–46.

[3] Anggraeni, T., Rahayu, S., Ahmad, I., Esyanti, R.R., and Putra, R.E., 2013, Resources partitioning and different foraging behavior is the basis for the coexistence of Thrips hawaiiensis (Thysanoptera: Tripidae) and Elaeidobius kamerunicus (Coleoptera: Curculionidae) on oil palm (Elaeis guineensis Jacq) flower, J. Entomol. Nematol., 5 (5), 59–63.

[4] Muhamad Fahmi, M.H., Ahmad Bukhary, A.K., Norma, H., and Idris, A.B., 2016, Analysis of volatile organic compound from Elaeis guineensis inflorescences planted on different soil types in Malaysia, AIP Conf. Proc., 1784 (1), 060020.

[5] Alves Filho, E.G., Brito, R.S., Rodrigues, T.H.S., Silva, L.M.A., de Brito, E.S., Canuto, K.M., Krug, C., and Zocolo, G.J., 2019, Association of pollinators of different species of oil palm with the metabolic profiling of volatile organic compounds, Chem. Biodivers., 16 (6), e1900050.

[6] Prasetyo, A.E., Purba, W.O., and Susanto, A., 2014, Elaeidobius kamerunicus: Application of hatch and carry technique for increasing oil palm fruit set, J. Oil Palm Res., 26 (3), 195–202.

[7] Dewi, L.K., Friatnasary, D.L., Herawati, W., Nurhadianty, V., and Cahyani, C., 2018, Studi perbandingan metode isolasi ekstraksi pelarut dan destilasi uap minyak atsiri kemangi terhadap komposisi senyawa aktif, RBAET, 2 (1), 13–19.

[8] Toudert, N., Zakkad, F., Dadda, N., Djilani, A., Dicko, A., and Djilani, S.E., 2021, Phytochemical analysis of bioactive extracts and seed oil of three Euphorbia species from Algerian flora by LC-MS and GC-MS, Indones. J. Chem., 21 (3), 546–553.

[9] Maser, W.H., Purwoko, A., Yuliana, N.D., Lubis, L.M., and Khatib, A., 2022, GC-MS based metabolite profiling, and antibacterial activity of torch ginger (Etlingera elatior) flowers extract, Indones. J. Chem., 22 (4), 1014–1024.

[10] Stratakos, A.C., and Koidis, A., 2016, “Methods for Extracting Essential Oils” in Essential Oils in Food Preservation, Flavor and Safety, Eds. Preedy, V.R. Academic Press, San Diego, US, 31–38.

[11] Akdağ, A., and Öztürk, E., 2019, Distillation methods of essential oils, Selçuk Univ. Fen Fak. Fen Derg., 45 (1), 22–31.

[12] Ma’sum, Z., and Proborini, W.D., 2016, Optimasi proses destilasi uap essential oil, Jurnal Reka Buana, 1 (2), 105–109.

[13] Mustapa, M.A., Guswenrivo, I., Zurohtun, A., Khairul Ikram, N.K., and Muchtaridi, M., 2023, Analysis of essential oils components from aromatic plants using headspace repellent method against Aedes aegypti mosquitoes, Molecules, 28 (11), 4269.

[14] Swaray, S., Rafii, M.Y., Amiruddin, M.D., Ismail, M.F., Jamian, S., Jalloh, M., Oladosu, Y., Mohamad, M.M., Marjuni, M., Kalopo, O.K., and Chukwu, S.C., 2021, Assessment of oil palm pollinating weevil (Elaeidobius kamerunicus) population density in biparental dura × pisifera hybrids on deep peat-soil in Perak State, Malaysia, Insects, 12 (3), 221.

[15] Mostafa, S., Wang, Y., Zeng, W., and Jin, B., 2022, Floral scents and fruit aromas: Functions, compositions, biosynthesis, and regulation, Front. Plant Sci., 13, 860157.

[16] Schurr, L., Masotti, V., Geslin, B., Gachet, S., Mahé, P., Jeannerod, L., and Affre, L. 2022, To what extent is fennel crop dependent on insect pollination?, Agric., Ecosyst. Environ., 338 (6), 108047.

[17] National Center for Biotechnology Information, 2022, PubChem Compound Summary for CID 5363269, Ethyl oleate, https://pubchem.ncbi.nlm.nih.gov/compound/Ethyl-oleate, accessed on May 23, 2022.

[18] Santos-Sánchez, N.F., Salas-Coronado, R., Hernández-Carlos, B., and Villanueva-Cañongo, C., 2019, “Shikimic Acid Pathway in Biosynthesis of Phenolic Compounds” in Plant Physiological Aspects of Phenolic Compounds, Eds. Soto-Hernández, M., García-Mateos, R., and Palma-Tenango, M., IntechOpen, Rijeka, Croatia.

[19] Tangpao, T., Krutmuang, P., Kumpuoun, W., Jantrawut, P., Pusadee, T., Cheewangkoon, R., Sommano, S.R., and Chuttong, B., 2021, Encapsulation of basil essential oil by paste method and combined application with mechanical trap for oriental fruit fly control, Insect, 12 (7), 633.

[20] Kardinan, A., 2019, Prospek insektisida nabati berbahan aktif metil eugenol (C12H24O2) sebagai pengendali hama ulat buah Bactrocera spp. (Diptera: Tephritidae). Perspektif, 18 (1), 16–27.

[21] Russo, A., Pollastri, S., Ruocco, M., Monti, M.M., and Loreto, F., 2022, Volatile organic compounds in the interaction between plants and beneficial microorganisms, J. Plant Interact., 17 (1), 840–852.

[22] Jankowska, M, Rogalska, J., Wyszkowska, J., and Stankiewicz, M., 2017, Molecular targets for components of essential oils in the insect nervous system: A review, Molecules, 23 (1), 34.

[23] Li, A.S., Iijima, A., Huang, J., Li, Q.X., and Chen, Y., 2020, Putative mode of action of the monoterpenoids linalool, methyl eugenol, estragole, and citronellal on ligand-gated ion channels, Engineering, 6 (5), 541–545.

[24] Jones, P.L., and Agrawal, A.A., 2017, Learning in insect pollinators and herbivores, Annu. Rev. Entomol., 62, 53–71.

[25] Conchou, L., Lucas, P., Meslin, C., Proffit, M., Staudt, M., and Renou, M., 2019, Insect odorscapes: From plant volatile to natural olfactory scenes, Front, Physiol., 10, 00972.

[26] Jardine, K.J., Fernades de Souza, F.V., Oikawa, P., Higuchi, N., Bill, M., Poras, R., Niinemets, Ü., and Chambers, J.Q., 2017, Integration C1 and C2 metabolism in tress, Int. J. Mol. Sci., 18 (10), 2045.

[27] Pickett, J.A., and Khan, Z.R., 2016, Plant volatile-mediated signalling and its application in agriculture: Successes and challenges, New Phytol., 212 (4), 856–870.

[28] Jardine, A.B., Jardine, K.J., Fuentes, J.D., Martin, S.T., Martins, G., Durgante, F., Carneiro, V., Higuchi, N., Manzi, A.O., and Chambers, J.Q., 2015, Highly reactive light dependent monoterpenes in the Amazon, Geophys. Res. Lett., 42 (5), 1576–1583.

[29] Vivaldo, G., Masi, E., Taiti, C., Calderalli, G., and Mancuso, S., 2017, The network of plant volatile organic compounds, Sci. Rep., 7 (1), 11050.



DOI: https://doi.org/10.22146/ijc.78682

Article Metrics

Abstract views : 1752 | views : 974


Copyright (c) 2023 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.