Characterization of Botanical Parts of Erythrina crista-galli Using Pyrolysis-Gas Chromatography/Mass Spectrometry and Multivariate Analysis

https://doi.org/10.22146/ijc.77325

Abd. Wahid Rizaldi Akili(1), Ari Hardianto(2), Jalifah Latip(3), Maya Ismiyati(4), Tati Herlina(5*)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjajaran, Jl. Raya Bandung Sumedang Km 21 Jatinangor, Sumedang 45363, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjajaran, Jl. Raya Bandung Sumedang Km 21 Jatinangor, Sumedang 45363, Indonesia
(3) School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor 46300, Malaysia
(4) Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km 46, Cibinong 16911, Indonesia
(5) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjajaran, Jl. Raya Bandung Sumedang Km 21 Jatinangor, Sumedang 45363, Indonesia
(*) Corresponding Author

Abstract


Erythrina crista-galli is commonly used in folk medicines for its pharmacological properties which are associated with the bioactive compounds. Profiling botanical parts of E. crista-galli is an exciting topic and essential to uncover the similarity and clustering based on their chemical content. The botanical parts of E. crista-galli, including bark, flowers, leaves, roots, and twigs, were subjected to pyrolysis-gas chromatography/mass spectrometry. The samples were pyrolyzed using a multi-shot pyrolyzer. The relative abundance of the pyrolysate was subjected to multivariate analysis, i.e., principal component analysis (PCA) and hierarchical cluster analysis (HCA). The scree plot for PC.1, PC. 2, and PC. 3 accounted for 36.5%, 27.2%, and 20.3%, respectively. Together, the first three PCs explain 84% of the total variance. The PCA allows characterizing the roots of E. crista-galli by the highest relative abundance of lignin G, followed by the twigs, bark, and leaves, while the flowers had the least relative abundance of lignin G. The HCA allows to cluster the botanical parts of E. crista-galli into three different clusters based on their chemical component similarity, i.e., flowers-leaves, twigs, and roots-bark. In conclusion, Py-GC/MS analysis can be used in conjunction with multivariate data analysis to characterize the botanical parts of E. crista-galli.

Keywords


E. crista-galli; pyrolysis-GC/MS; multivariate analysis; principal component analysis; hierarchical clustering analysis

Full Text:

Full Text PDF


References

[1] Tan, Q.W., Ni, J.C., Fang, P.H. and Chen, Q.J., 2017, A New Erythrinan alkaloid glycoside from the seeds of Erythrina crista-galli, Molecules, 22 (9), 1558.

[2] Fahmy, N.M., Al-Sayed, E., El-Shazly, M., and Singab, A.N., 2018, Comprehensive review on flavonoids biological activities of Erythrina plant species, Ind. Crops Prod., 123, 500–538.

[3] Kaushal, A., Sharma, M., Navneet, N., and Sharma, M., 2020, Ethnomedicinal, phytochemical, therapeutic and pharmacological review of the genus Erythrina, Int. J. Bot. Stud., 5 (6), 642–648.

[4] Kim, D.S., Na, H., Kwack, Y., and Chun, C., 2014, Secondary metabolite profiling in various parts of tomato plants, Korean J. Hortic. Sci. Technol., 32 (2), 252–260.

[5] Yang, H., Huang, Z., Huang, Y., Dong, W., Pan, Z., and Wang, L., 2015, Characterization of Chinese crude propolis by pyrolysis-gas chromatography/mass spectrometry, J. Anal. Appl. Pyrolysis, 113, 158–164.

[6] Youssef, F.S., Mamatkhanova, M.A., Mamadalieva, N.Z., Zengin, G., Aripova, S.F., Alshammari, E., and Ashour, M.L., 2020, Chemical profiling and discrimination of essential oils from six Ferula species using GC analyses coupled with chemometrics and evaluation of their antioxidant and enzyme inhibitory potential, Antibiotics, 9 (8), 518.

[7] Tanuwidjaja, I., Svečnjak, L., Gugić, D., Levanić, M., Jurić, S., Vinceković, M., and Fuka, M.M., 2021, Chemical profiling and antimicrobial properties of honey bee (Apis mellifera L.) venom, Molecules, 26 (10), 3049.

[8] Ikram, M.M.M., Ridwani, S., Putri, S.P., and Fukusaki, E., 2020, GC-MS based metabolite profiling to monitor ripening-specific metabolites in pineapple (Ananas comosus), Metabolites, 10 (4), 134.

[9] Duan, S.G., Hong, K., Tang, M., Tang, J., Liu, L.X., Gao, G.F., Shen, Z.J., Zhang, X.M., and Yi, Y., 2021, Untargeted metabolite profiling of petal blight in field-grown Rhododendron agastum using GC-TOF-MS and UHPLC-QTOF-MS/MS, Phytochemistry, 184, 112655.

[10] Qian, Y., Wang, Y., Sa, R., Yan, H., Pan, X., Yang, Y., and Sun, Y., 2013, Metabolic fingerprinting of Angelica sinensis during growth using UPLC-TOFMS and chemometrics data analysis, Chem. Cent. J., 7 (1), 42.

[11] Picó, Y., and Barceló, D., 2020, Pyrolysis gas chromatography-mass spectrometry: focus on organic matter and microplastics, TrAC, Trends Anal. Chem., 130, 115963.

[12] Traoré, M., Kaal, J., and Martínez Cortizas, A., 2018, Chemometric tools for identification of wood from different oak species and their potential for provenancing of Iberian shipwrecks (16th-18th centuries AD), J. Archaeol. Sci., 100, 62–73.

[13] Szczepanik, M., Szyszlak-Bargłowicz, J., Zając, G., Koniuszy, A., Hawrot-Paw, M., and Wolak, A., 2021, The use of multivariate data analysis (HCA and PCA) to characterize ashes from biomass combustion, Energies, 14 (21), 6887.

[14] Greenacre, M., Groenen, P.J.F., Hastie, T., D'Enza, A.I., Markos, A., and Tuzhilina, E., 2022, Principal component analysis, Nat. Rev. Methods Primers, 2 (1), 100.

[15] Wehrens, R., 2020, Chemometrics with R Multivariate: Data Analysis in the Natural and Life Sciences, Springer-Verlag, Berlin, Heidelberg.

[16] Madala, N.E., Piater, L.A., Steenkamp, P.A., and Dubery, I.A., 2014, Multivariate statistical models of metabolomic data reveals different metabolite distribution patterns in isonitrosoacetophenone-elicited Nicotiana tabacum and Sorghum bicolor cells, Springerplus, 3 (1), 254.

[17] Moldoveanu, S.C. 2020, Analytical Pyrolysis of Natural Organic Polymers, Elsevier Science, New York, US.

[18] Husson, F., Le, S., and Pagès, J., 2017, Exploratory Multivariate Analysis by Example Using R, 2nd Ed., Chapman and Hall/CRC, New York, US.

[19] Husson, F., Josse, J., Le, S., and Mazet, F., 2016, Package 'factominer', An R package, 96, 698.

[20] Kassambara, A., 2016, Practical Guide to Principal Component Methods in R, STHDA.

[21] Wickham, H., 2016, ggplot2: Elegant Graphics for Data Analysis, Springer, Cham, Switzerland.

[22] Garcia, H., and Filzmoser, P., 2017, Multivariate Statistical Analysis using the R package chemometrics, Vienna University of Technology, Austria.

[23] Kang, X., Kirui, A., Dickwella Widanage, M.C., Mentink-Vieger, F., Cosgrove, D.J., and Wang, T., 2019, Lignin-polysaccharide interactions in plant secondary cell walls revealed by solid-state NMR, Nat. Commun., 10 (1), 347.

[24] Tarasov, D., Leitch, M., and Fatehi, P., 2018, Lignin-carbohydrate complexes: Properties, applications, analyses, and methods of extraction: A review, Biotechnol. Biofuels, 11 (1), 269.

[25] Decou, R., Labrousse, P., Béré, E., Fleurat-Lessard, P., and Krausz, P., 2020, Structural features in tension wood and distribution of wall polymers in the G-layer of in vitro grown poplars, Protoplasma, 257 (1), 13–29.

[26] Blaschek, L., Champagne, A., Dimotakis, C., Nuoendagula, C., Decou, R., Hishiyama, S., Kratzer, S., Kajita, S., and Pesquet, E., 2020, Cellular and genetic regulation of coniferaldehyde incorporation in lignin of herbaceous and woody plants by quantitative Wiesner staining, Front. Plant Sci., 11, 00109.

[27] Yan, Z., Li, P., Chen, Y., Han, W., and Fang, J., 2016, Nutrient allocation strategies of woody plants: An approach from the scaling of nitrogen and phosphorus between twig stems and leaves, Sci. Rep., 6 (1), 20099.

[28] Granato, D., Santos, J.S., Escher, G.B., Ferreira, B.L., and Maggio, R.M., 2018, Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective, Trends Food Sci. Technol., 72, 83–90.

[29] Park, Y.J., Baek, S.A., Choi, Y., Kim, J.K., and Park, S.U., 2019, Metabolic profiling of nine Mentha species and prediction of their antioxidant properties using chemometrics, Molecules, 24 (2), 258.

[30] Ebeling, B., Vargas, C., and Hubo, S., 2013, Combined cluster analysis and principal component analysis to reduce data complexity for exhaust air purification, Open Food Sci. J., 7 (1), 8–22.

[31] Kebelmann, K., Hornung, A., Karsten, U., and Griffiths, G., 2013, Intermediate pyrolysis and product identification by TGA and Py-GC/MS of green microalgae and their extracted protein and lipid components, Biomass Bioenergy, 49, 38–48.

[32] El Hayany, B., El Fels, L., Dignac, M.F., Quena, K., Rumpel, C., and Hafidi, M., 2021, Pyrolysis-GCMS as a tool for maturity evaluation of compost from sewage sludge and green waste, Waste Biomass Valorization, 12 (5), 2639–2652.

[33] Rambo, D.F., Biegelmeyer, R., Toson, N.S.B., Dresch, R.R., Moreno, P.R.H., and Henriques, A.T., 2019, The genus Erithrina L.: A review on its alkaloids, preclinical, and clinical studies, Phytother. Res., 33 (5), 1258–1276.

[34] Chen, H., Xie, Y., Chen, W., Xia, M., Li, K., Chen, Z., Chen, Y., and Yang, H., 2019, Investigation on co-pyrolysis of lignocellulosic biomass and amino acids using TG-FTIR and Py-GC/MS, Energy Convers. Manage., 196, 320–329.



DOI: https://doi.org/10.22146/ijc.77325

Article Metrics

Abstract views : 2254 | views : 1374


Copyright (c) 2023 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.