Extraction, Isolation, and Characterization of Nanocrystalline Cellulose from Barangan Banana (Musa acuminata L.) Peduncles Waste
Ratna Ratna(1), Nasrul Arahman(2), Agus Arip Munawar(3), Sri Aprilia(4*)
(1) Doctoral Program, School of Engineering, Post Graduate Program, Universitas Syiah Kuala, Darussalam, Banda Aceh 23111, Indonesia; Department of Agricultural Engineering, Universitas Syiah Kuala, Darussalam, Banda Aceh 23111, Indonesia
(2) Doctoral Program, School of Engineering, Post Graduate Program, Universitas Syiah Kuala, Darussalam, Banda Aceh 23111, Indonesia; Department of Chemical Engineering, Universitas Syiah Kuala, Darussalam, Banda Aceh 23111, Indonesia; Graduate School of Environmental Management, Universitas Syiah Kuala, Darussalam, Banda Aceh 23111, Indonesia; Research Center for Environmental and Natural Resources, Universitas Syiah Kuala, Jl. Hamzah Fansuri No. 4, Darussalam, Banda Aceh 23111, Indonesia; Atsiri Research Center, Universitas Syiah Kuala, Jl. Syeh A. Rauf, Darussalam, Banda Aceh 23111, Indonesia
(3) Department of Agricultural Engineering, Universitas Syiah Kuala, Darussalam, Banda Aceh 23111, Indonesia
(4) Doctoral Program, School of Engineering, Post Graduate Program, Universitas Syiah Kuala, Darussalam, Banda Aceh 23111, Indonesia; Department of Chemical Engineering, Universitas Syiah Kuala, Darussalam, Banda Aceh 23111, Indonesia
(*) Corresponding Author
Abstract
Microwave-assisted acid hydrolysis has an impact on the characteristics of nanocrystalline cellulose (NCCs). In this study, NCCs was prepared from banana peduncles through hydrolysis of sulfuric acid (concentrations of 1, 2, and 3 M) and hydrolysis time (0.5 and 1.5 h) assisted by microwave and ultrasonic energy to obtain the best NCCs. The characterization of NCCs properties, namely, yield, morphology, functional groups, crystallinity, heat resistance, particle size, and color. The results showed that the yield of NCCs decreased as sulfuric acid concentration and the time length of hydrolysis increased. The FTIR spectra of NCCs showed the most relevant molecular bands, namely O–H, C–H, and C–O, at the wavenumbers range of 3200–4000, 2500–3200, and 500–1500 cm−1, respectively. The TGA test showed that the decomposition of NCCs occurred at a temperature of 275.35–409.40 °C, with a weight loss ranging from 84.00% to 94.09%. Crystallinity index and crystal sizes range from 53.99% to 57.33% and 22.35 to 36.28 nm, respectively. The brightest color of NCCs powder was generated with 1 M sulfuric acid and a hydrolysis time of 0.5 h. In conclusion, barangan banana peduncles waste can be used as raw material for producing NCCs.
Keywords
Full Text:
Full Text PDFReferences
[1] Adsal, K.A., Üçtuğ, F.G., and Arikan, O.A., 2020, Environmental life cycle assessment of utilizing stem waste for banana production in greenhouses in Turkey, Sustainable Prod. Consumption, 22, 110–125.
[2] Padam, B.S., Tin, H.S., Chye, F.Y., and Abdullah, M.I., 2014, Banana by-products: an under-utilized renewable food biomass with great potential, J. Food Sci. Technol., 51 (12), 3527–3545.
[3] Gumisiriza, R., Hawumba, J.F., Okure, M., and Hensel, O., 2017, Biomass waste-to-energy valorisation technologies: A review case for banana processing in Uganda, Biotechnol. Biofuels, 10 (1), 11.
[4] Ahmad, T., and Danish, M., 2018, Prospects of banana waste utilization in wastewater treatment: A review, J. Environ. Manage., 206, 330–348.
[5] Nur, C., and Djati, I.D., 2018, Studi daya serap warna serat tandan pisang dengan pembanding serat abaka dan serat sabut kelapa, Arena Tekstil, 33 (1), 19–28.
[6] Seta, F.T., An, X., Liu, L., Zhang, H., Yang, J., Zhang, W., Nie, S., Yao, S., Cao, H., Xu, Q., Bu, Y., and Liu, H., 2020, Preparation and characterization of high yield cellulose nanocrystals (CNC) derived from ball mill pretreatment and maleic acid hydrolysis, Carbohydr. Polym., 234, 115942.
[7] Chen, Q., Xiong, J., Chen, G., and Tan, T., 2020, Preparation and characterization of highly transparent hydrophobic nanocellulose film using corn husks as main material, Int. J. Biol. Macromol., 158, 781–789.
[8] Ilyas, R.A., Sapuan, S.M., Atikah, M.S.N., Asyraf, M.R.M., Ayu Rafiqah, S., Aisyah, H.A., Mohd Nurazzi, N., and Norrrahim, M.N.F., 2021, Effect of hydrolysis time on the morphological, physical, chemical, and thermal behavior of sugar palm nanocrystalline cellulose (Arenga pinnata (Wurmb.) Merr), Text. Res. J., 91 (1-2), 152–167.
[9] Ng, L.Y., Wong, T.J., Ng, C.Y., and Amelia, C.K.M., 2021, A review on cellulose nanocrystals production and characterization methods from Elaeis guineensis empty fruit bunches, Arabian J. Chem., 14 (9), 103339.
[10] Abdul Khalil, H.P.S., Davoudpour, Y., Saurabh, C.K., Hossain, M.S., Adnan, A.S., Dungani, R., Paridah, M.T., Islam Sarker, M.Z., Fazita, M.R.N., Syakir, M.I., and Haafiz, M.K.M., 2016, A review on nanocellulosic fibres as new material for sustainable packaging: Process and applications, Renewable Sustainable Energy Rev., 64, 823–836.
[11] Flores-Velázquez, V., Córdova-Pérez, G.E., Silahua-Pavón, A.A., Torres-Torres, J.G., Sierra, U., Fernández, S., Godavarthi, S., Ortiz-Chi, F., and Espinosa-González, C.G., 2020, Cellulose obtained from banana plant waste for catalytic production of 5-HMF: Effect of grinding on the cellulose properties, Fuel, 265, 116857.
[12] Harini, K., and Chandra Mohan, C., 2020, Isolation and characterization of micro and nanocrystalline cellulose fibers from the walnut shell, corncob and sugarcane bagasse, Int. J. Biol. Macromol., 163, 1375–1383.
[13] Kian, L.K., Saba, N., Jawaid, M., Alothman, O.Y., and Fouad, H., 2020, Properties and characteristics of nanocrystalline cellulose isolated from olive fiber, Carbohydr. Polym., 241, 116423.
[14] Camacho, M., Ureña, Y.R.C., Lopretti, M., Carballo, L.B., Moreno, G., Alfaro, B., and Vega Baudrit, J.R., 2017, Synthesis and characterization of nanocrystalline cellulose derived from Pineapple peel residues, J. Renewable Mater., 5 (5), 271–279.
[15] Xu, Y., Atrens, A., and Stokes, J.R., 2020, A review of nanocrystalline cellulose suspensions: Rheology, liquid crystal ordering and colloidal phase behaviour, Adv. Colloid Interface Sci., 275, 102076.
[16] Ghorbani, M., and Roshangar, L., 2021, Construction of collagen/nanocrystalline cellulose based-hydrogel scaffolds: Synthesis, characterization, and mechanical properties evaluation, Int. J. Polym. Mater. Polym. Biomater., 70 (2), 142–148.
[17] Qi, W., Li, T., Zhang, Z., and Wu, T., 2021, Preparation and characterization of oleogel-in-water pickering emulsions stabilized by cellulose nanocrystals, Food Hydrocolloids, 110, 106206.
[18] Doh, H., Lee, M.H., and Whiteside, W.S., 2020, Physicochemical characteristics of cellulose nanocrystals isolated from seaweed biomass, Food Hydrocolloids, 102, 105542.
[19] Ditzel, F.I., Prestes, E., Carvalho, B.M., Demiate, I.M., and Pinheiro, L.A., 2017, Nanocrystalline cellulose extracted from pine wood and corncob, Carbohydr. Polym., 157, 1577–1585.
[20] Shao, X., Wang, J., Liu, Z., Hu, N., Liu, M., and Xu, Y., 2020, Preparation and characterization of porous microcrystalline cellulose from corncob, Ind. Crops Prod., 151, 112457.
[21] Supian, M.A.F., Amin, K.N.M., Jamari, S.S., and Mohamad, S., 2020, Production of cellulose nanofiber (CNF) from empty fruit bunch (EFB) via mechanical method, J. Environ. Chem. Eng., 8 (1), 103024.
[22] Foo, M.L., Ooi, C.W., Tan, K.W., and Chew, I.M.L., 2020, A step closer to sustainable industrial production: Tailor the properties of nanocrystalline cellulose from oil palm empty fruit bunch, J. Environ. Chem. Eng., 8 (5), 104058.
[23] Kusmono, K., Listyanda, R.F., Wildan, M.W., and Ilman, M.N., 2020, Preparation and characterization of cellulose nanocrystal extracted from ramie fibers by sulfuric acid hydrolysis, Heliyon, 6 (11), e05486.
[24] Jiang, Q., Xing, X., Jing, Y., and Han, Y., 2020, Preparation of cellulose nanocrystals based on waste paper via different systems, Int. J. Biol. Macromol., 149, 1318–1322.
[25] Plengnok, U., and Jarukumjorn, K., 2020, Preparation and characterization of nanocellulose from sugarcane bagasse, Biointerface Res. Appl. Chem., 10 (3), 5675–5678.
[26] Mocktar, N.A., Abdul Razab, M.K.A., Mohamed Noor, A., and Abdullah, N.H., 2020, Preparation and characterization of kenaf and oil palm nanocellulose by acid hydrolysis method, Mater. Sci. Forum, 1010, 495–500.
[27] Haldar, D., and Purkait, M.K., 2020, Micro and nanocrystalline cellulose derivatives of lignocellulosic biomass: A review on synthesis, applications and advancements, Carbohydr. Polym., 250, 116937.
[28] Raja, P.M., Rangkuti, I.U.P., Hendra Ginting, M., Giyanto, G., and Siregar, W.F., 2021, Preparation and characterization of cellulose microcrystalline made from palm oil midrib, IOP Conf. Ser.: Earth Environ. Sci., 819, 012002.
[29] Mohd Ishak, N.A., Khalil, I., Abdullah, F.Z., and Muhd Julkapli, N., 2020, A correlation on ultrasonication with nanocrystalline cellulose characteristics, Carbohydr. Polym., 246, 116553.
[30] Abdul Khalil, H.P.S., Davoudpour, Y., Sri Aprilia, N.A., Mustapha, A., Hossain, M.S., Islam, M.N., and Dungani, R., 2014, "Nanocellulose-Based Polymer Nanocomposite: Isolation, Characterization and Applications" in Nanocellulose Polymer Nanocomposites, Eds. Thakur, V.K., Scrivener Publishing LLC, Wiley, Massachusetts, 273–309.
[31] Villalobos, K., Rojas, H., González-Paz, R., Granados, D.B., González-Masís, J., Baudrit, J.V., and Corrales-Ureña, Y.R., 2017, Production of starch films using propolis nanoparticles as novel bioplasticizer, J. Renewable Mater., 5 (3-4), 189–198.
[32] Tiwari, G., Sharma, A., Kumar, A., and Sharma, S., 2019, Assessment of microwave-assisted alkali pretreatment for the production of sugars from banana fruit peel waste, Biofuels, 10 (1), 3–10.
[33] Abdul Khalil, H.P.S., Chong, E.W.N., Owolabi, F.A.T., Asniza, M., Tye, Y.Y., Rizal, S., Nurul Fazita, M.R., Mohamad Haafiz, M.K., Nurmiati, Z., and Paridah, M.T., 2019, Enhancement of basic properties of polysaccharide-based composites with organic and inorganic fillers: A review, J. Appl. Polym. Sci., 136, 47251.
[34] Chavan, R.R., and Hosamani, K.M., 2018, Microwave-assisted synthesis, computational studies and antibacterial/anti-inflammatory activities of compounds based on coumarin-pyrazole hybrid, R. Soc. Open Sci., 5 (5), 172435.
[35] Chowdhury, Z.Z., and Abd Hamid, S.B., 2016, Preparation and characterization of nanocrystalline cellulose using ultrasonication combined with a microwave-assisted pretreatment process, BioResources, 11 (2), 3397–3415.
[36] Ilyas, R.A., Sapuan, S.M., Sanyang, M.L., Ishak, M.R., and Zainuddin, E.S., 2018, Nanocrystalline cellulose as reinforcement for polymeric matrix nanocomposites and its potential applications: A review, Curr. Anal. Chem., 14 (3), 203–225.
[37] Silva-Castro, I., Martín-Ramos, P., Matei, P.M., Fernandes-Correa, M., Hernández-Navarro, S., and Martín-Gil, J., 2017, "Eco-Friendly Nanocomposites of Chitosan with Natural Extracts, Antimicrobial Agents, and Nanometals" in Handbook of Composites from Renewable Materials, Eds. Thakur, V.K., Thakur, M.K., and Kessler, M.R., Scrivener Publishing LLC, Wiley, Massachusetts, 35–60.
[38] Wu, C., McClements, D.J., He, M., Zheng, L., Tian, T., Teng, F., and Li, Y., 2021, Preparation and characterization of okara nanocellulose fabricated using sonication or high-pressure homogenization treatments, Carbohydr. Polym., 255, 117364.
[39] Wang, H., Xie, H., Du, H., Wang, X., Liu, W., Duan, Y., Zhang, X., Sun, L., Zhang, X., and Si, C., 2020, Highly efficient preparation of functional and thermostable cellulose nanocrystals via H2SO4 intensified acetic acid hydrolysis, Carbohydr. Polym., 239, 116233.
[40] Rahmawati, C., Aprilia, S., Saidi, T., Aulia, T.B., and Ahmad, I., 2021, Preparation and characterization of cellulose nanocrystals from Typha sp. as a reinforcing agent, J. Nat. Fibers, 00, 1–14.
[41] Ratna, R., Aprilia, S., Arahman, N., and Munawar, A.A., 2021, Characterization of cellulose nanocrystalline isolated from banana peduncles using acid hydrolysis, IOP Conf. Ser.: Earth Environ. Sci., 922, 012072.
[42] Ilyas, R.A., Sapuan, S.M., and Ishak, M.R., 2018, Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga pinnata), Carbohydr. Polym., 181, 1038–1051.
[43] Gan, P.G., Sam, S.T., Bin Abdullah, M.F., Bin Zulkepli, N.N., and Yeong, Y.F., 2017, Characterization of nanocrystalline cellulose isolated from empty fruit bunch using acid hydrolysis, Solid State Phenom., 264, 9–12.
[44] Rulaningtyas, R., Suksmono, A.B., Mengko, T.L.R., and Putri Saptawati, G.A., 2015, Segmentasi citra berwarna dengan menggunakan metode clustering berbasis patch untuk identifikasi mycobacterium tuberculosis, Jurnal Biosains Pascasarjana, 17 (1), 19–25.
[45] Johar, N., Ahmad, I., and Dufresne, A., 2012, Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk, Ind. Crops Prod., 37 (1), 93–99.
[46] Pereira, P.H.F., Waldron, K.W., Wilson, D.R., Cunha, A.P., de Brito, E.S., Rodrigues, T.H.S., Rosa, M.F., and Azeredo, H.M.C., 2017, Wheat straw hemicelluloses added with cellulose nanocrystals and citric acid. Effect on film physical properties, Carbohydr. Polym., 164, 317–324.
[47] Collazo-Bigliardi, S., Ortega-Toro, R., and Chiralt Boix, A., 2018, Isolation and characterisation of microcrystalline cellulose and cellulose nanocrystals from coffee husk and comparative study with rice husk, Carbohydr. Polym., 191, 205–215.
[48] Aditama, A.G., and Ardhyananta, H., 2017, Isolasi selulosa dari serat tandan kosong kelapa sawit untuk nano filler komposit absorpsi suara: Analisis FTIR, Jurnal Teknik ITS, 6 (2), 228–231.
[49] Ghazy, M.B., El-Hai, F.A., El-Zawawy, W.K., and Owda, M.E., 2017, Morphology and mechanical properties of nanocrystalline cellulose reinforced chitosan based nanocomposite, Global J. Chem., 3 (1), 125–135.
[50] Leung, A.C.W., Hrapovic, S., Lam, E., Liu, Y., Male, K.B., Mahmoud, K.A., and Luong, J.H.T., 2011, Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure, Small, 7 (3), 302–305.
[51] Alves, L., Medronho, B., Antunes, F.E., Fernández-García, M.P., Ventura, J., Araújo, J.P., Romano, A., and Lindman, B., 2015, Unusual extraction and characterization of nanocrystalline cellulose from cellulose derivatives, J. Mol. Liq., 210, 106–112.
[52] Putri, E., and Gea, S., 2018, Isolasi dan karakterisasi nanokistral selulosa dari tandan sawit (Elaeis guineensis Jack), Elkawnie, 4, 13–22.
[53] Tritt-Goc, J., Lindner, Ł., Bielejewski, M., Markiewicz, E., and Pankiewicz, R., 2020, Synthesis, thermal properties, conductivity and lifetime of proton conductors based on nanocrystalline cellulose surface-functionalized with triazole and imidazole, Int. J. Hydrogen Energy, 45 (24), 13365–13375.
[54] Ludueña, L., Fasce, D., Alvarez, V.A., and Stefani, P.M., 2011, Nanocellulose from rice husk following alkaline treatment to remove silica, BioResources, 6 (2), 1440–1453.
[55] Wang, H., Pudukudy, M., Ni, Y., Zhi, Y., Zhang, H., Wang, Z., Jia, Q., and Shan, S., 2020, Synthesis of nanocrystalline cellulose via ammonium persulfate-assisted swelling followed by oxidation and their chiral self-assembly, Cellulose, 27 (2), 657–676.
[56] Evans, S.K., Wesley, O.N., Nathan, O., and Moloto, M.J., 2019, Chemically purified cellulose and its nanocrystals from sugarcane baggase: Isolation and characterization, Heliyon, 5 (10), e02635.
[57] Sun, Q., Zhao, X., Wang, D., Dong, J., She, D., and Peng, P., 2018, Preparation and characterization of nanocrystalline cellulose/Eucommia ulmoides gum nanocomposite film, Carbohydr. Polym., 181, 825–832.
[58] Hamad, W.Y., and Hu, T.Q., 2010, Structure-process-yield interrelations in nanocrystalline cellulose extraction, Can. J. Chem. Eng., 88 (3), 392–402.
[59] Qian, Y., Bian, L., Wang, K., Chia, W.Y., Khoo, K.S., Zhang, C., and Chew, K.W., 2021, Preparation and characterization of curdlan/nanocellulose blended film and its application to chilled meat preservation, Chemosphere, 266, 128948.
[60] Liu, Z., Li, X., Xie, W., and Deng, H., 2017, Extraction, isolation and characterization of nanocrystalline cellulose from industrial kelp (Laminaria japonica) waste, Carbohydr. Polym., 173, 353–359.
[61] Costa, A.L.R., Gomes, A., Tibolla, H., Menegalli, F.C., and Cunha, R.L., 2018, Cellulose nanofibers from banana peels as a Pickering emulsifier: High-energy emulsification processes, Carbohydr. Polym., 194, 122–131.
[62] Sumadiyasa, M., and Manuaba, I.B.S., 2018, Penentuan ukuran kristal menggunakan formula Scherrer, Williamson-Hull plot, dan ukuran partikel dengan SEM, Buletin Fisika, 19, 28–35.
[63] Sri Aprilia, N.A., Davoudpour, Y., Zulqarnain, W., Abdul Khalil, H.P.S., Che Mohamad Hazwan, C.I., Hossain, M.S., Dungani, R., Fizree, H.M., Zaidon, A., and Mohamad Haafiz, M.K., 2016, Physicochemical characterization of microcrystalline cellulose extracted from kenaf bast, BioResources, 11, 3875–3889.
[64] Akbar, D.A., Kusmono, K., Wildan, M.W., and Ilman, M.N., 2020, Extraction and characterization of nanocrystalline cellulose (NCC) from ramie fiber by hydrochloric acid hydrolysis, Key Eng. Mater., 867, 109–116.
[65] Maruddin, F., Malaka, R., Baba, S., Amqam, H., Taufik, M., and Sabil, S., 2020, Brightness, elongation and thickness of edible film with caseinate sodium using a type of plasticizer, IOP Conf. Ser.: Earth Environ. Sci., 492, 012043.
[66] Atalla, S.M.M., EL Gamal, N.G., Awad, H.M., and Ali, N.F., 2019, Production of pectin lyase from agricultural wastes by isolated marine Penicillium expansum RSW_SEP1 as dye wool fiber, Heliyon, 5 (8), e02302.
DOI: https://doi.org/10.22146/ijc.74718
Article Metrics
Abstract views : 3631 | views : 3502Copyright (c) 2022 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.