Evaluation of the Antiplasmodial Properties of Andrographis paniculata (Burm.f.) and Peperomia pellucida (L.) Kunth


Nurhayati Bialangi(1), Mohamad Adam Mustapa(2), Yuszda Salimi(3), Weny Musa(4), Ari Widiyantoro(5), Agus Malik Ibrahim(6), Boima Situmeang(7*), Julinton Sianturi(8)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Gorontalo, Gorontalo 96128, Indonesia
(2) Department of Pharmacy, Faculty of Sport and Health Sciences, Universitas Negeri Gorontalo, Gorontalo 96128, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Gorontalo, Gorontalo 96128, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Gorontalo, Gorontalo 96128, Indonesia
(5) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Tanjungpura, Pontianak 78115, Indonesia
(6) Department of Chemistry, Sekolah Tinggi Analis Kimia Cilegon, Banten, 42411, Indonesia
(7) Department of Chemistry, Sekolah Tinggi Analis Kimia Cilegon, Banten, 42411, Indonesia
(8) Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
(*) Corresponding Author


Plasmodium species are the infectious agents that are responsible for malaria, a disease that claims the lives of approximately 400,000 people annually. The fact that drug resistance against malaria is on the rise suggests that new antimalarial compounds need to be discovered. It is well known that medicinal plants present the best opportunity for the identification of novel antimalaria chemicals. Both the Andrographis paniculata (Burm.f.) and Peperomia pellucida (L. Kunth) species have been tested for their antiplasmodial ability against the Plasmodium falciparum strain. The P. pellucida (L. Kunth) species has also been subjected to in vitro and in vivo biological research. P. pellucida was used to isolate the steroid known as 3-hydroxy-24-ethyl-5,22-cholestadiene (1) and the triterpenoid known as 3-hydroxy-9-lanosta-7,24E-dien-26-oic acid (2). Both compounds were then tested for their activity in vitro. In the mice model, triterpenoid 2 had a substantial chemo-suppressive impact.


A. paniculata (Burm.f.); P. pellucida L. Kunth; Plasmodium falciparum; inhibition; 3β-hydroxy-9-lanosta-7,24E-dien-26-oic acid


[1] World Health Organization, ‎2019, World malaria report 2019, World Health Organization, Geneva, https://apps.who.int/iris/handle/10665/330011, License: CC BY-NC-SA 3.0 IGO

[2] Menard, D., and Dondorp, A., 2017, Antimalarial drug resistance: A threat to malaria elimination, Cold Spring Harbor Perspect. Med., 7, a025619.

[3] Diagana, T.T., 2015, Supporting malaria elimination with 21st century antimalarial agent drug discovery, Drug Discovery Today, 20 (10), 1265–1270.

[4] Cowell, A.N., and Winzeler, E.A., 2019, The genomic architecture of antimalarial drug resistance, Briefings Funct. Genomics, 18 (5), 314–328.

[5] Babatunde, K.A., and Adenuga, O.F., 2022, Neutrophils in malaria: A double edged sword role, Front. Immunol., 13, 922377.

[6] Tu, Y., 2011, The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine, Nat. Med., 17 (10), 1217–1220.

[7] Gómez-García, A., and Medina-Franco, J.L., 2022, Progress and Impact of Latin American Natural Product Databases, Biomolecules, 12 (9), 1202.

[8] Hedrén, M., Chase, M.W., and Olmstead, R.G., 1995, Relationships in the Acanthaceae and related families as suggested by cladistic analysis of rbcL nucleotide sequences, Plant Syst. Evol., 194 (1), 93–109.

[9] Dirar, A.I., Adhikari-Devkota, A., Kunwar, R.M., Paudel, K.R., Belwal, T., Gupta, G., Chellapan, D.K., Hansbro, P.M., Dua, K., and Devkota, H.P., 2021, Genus Blepharis (Acanthaceae): A review of ethnomedicinally used species, and their phytochemistry and pharmacological activities, J. Ethnopharmacol., 265, 113255.

[10] Wahidah, B.F., and Husain, F., 2018, Etnobotani tumbuhan obat yang dimanfaatkan oleh masyarakat Desa Samata Kecamatan Somba Opu Kabupaten Gowa Sulawesi Selatan, Life Sci., 7 (2), 39 –88.

[11] Widyawaruyanti, A., Asrory, M., Ekasari, W., Setiawan, D., Radjaram, A., Tumewu, L., and Hafid, A.F., 2014, In vivo antimalarial activity of Andrographis paniculata tablets, Procedia Chem., 13, 101–104.

[12] Sari, N., Wahidah, B.F., and Gaffar, N.A., 2017, Etnobotani tumbuhan yang digunakan dalam pengobatan tradisional di Kecamatan Sinjai Selatan Kabupaten Sinjai Sulawasi Selatan, Pros. Sem. Nas. Biol. Life, 3 (1), 6–13.

[13] Dalimartha, S., and Adrian, F., 2013, Ramuan Herbal Tumpas Penyakit, Penebar Swadaya, Jakarta, Indonesia.

[14] Ekasari, W., Fatmawati, D., Khoiriah, S.M., Baqiuddin, W.A., Nisa, H.Q., Maharupini, A., Wahyuni, T.S., Oktarina, R.D., Suhartono, E., and Sahu, R.K., 2022, Antimalarial activity of extract and fractions of Sauropus androgynus (L.) Merr, Scientifica, 2022, 3552491.

[15] Giemsa, G., 1902, Färbemethoden für malariaparasiten, Zentralbl. Bakteriol., 31, 429–430.

[16] McLean, R.C., 1943, Microscopic technique in biology and medicine, Nature, 152 (3868), 709.

[17] Kwansa-Bentum, B., Agyeman, K., Larbi-Akor, J., Anyigba, C., and Appiah-Opong, R., 2019, In vitro assessment of antiplasmodial activity and cytotoxicity of Polyalthia longifolia leaf extracts on Plasmodium falciparum strain NF54, Malar. Res. Treat., 2019, 6976298.

[18] Kamaraj, C., Kaushik, N.K., Mohanakrishnan, D., Elango, G., Bagavan, A., Zahir, A.A., Rahuman, A.A., and Sahal, D., 2012, Antiplasmodial potential of medicinal plant extracts from Malaiyur and Javadhu hills of South India, Parasitol. Res., 111 (2), 703–715.

[19] Greca, M.D., Monaco, P., and Previtera, L., 1990, Stigmasterols from Typha latifolia, J. Nat. Prod., 53 (6), 1430–1435.

[20] Wang, G.W., Lv, C., Yuan, X., Ye, J., Jin, H.Z., Shan, L., Xu, X.K., Shen, Y.H., and Zhang, W.D., 2015, Lanostane-type triterpenoids from Abies faxoniana and their DNA topoisomerase inhibitory activities, Phytochemistry, 116, 221–229.

[21] Shen, J., Kai, J., Tang, Y., Zhang, L., Su, S., and Duan, J.A., 2016, The chemical and biological properties of Euphorbia kansui, Am. J. Chin. Med., 44 (2), 253–273.

[22] Isaka, M., Chinthanom, P., Sappan, M., Supothina, S., Vichai, V., Danwisetkanjana, K., Boonpratuang, T., Hyde, K.D., and Choeyklin, R., 2017, Antitubercular activity of mycelium-associated Ganoderma lanostanoids, J. Nat. Prod., 80 (5), 1361–1369.

[23] Perumal, P., Sowmiya, R., Kumar, S.P., Ravikumar, S., Deepak, P., and Balasubramani, G., 2018, Isolation, structural elucidation and antiplasmodial activity of fucosterol compound from brown seaweed, Sargassum linearifolium against malarial parasite Plasmodium falciparum, Nat. Prod. Res., 32 (11), 1316–1319.

[24] Workman, S.D., Worrall, L.J., and Strynadka, N.C.J., 2018, Crystal structure of an intramembranal phosphatase central to bacterial cell-wall peptidoglycan biosynthesis and lipid recycling, Nat. Commun., 9 (1), 1159.

[25] Fu, Y., Ding, Y., Wang, Q., Zhu, F., Tan, Y., Lu, X., Guo, B., Zhang, Q., Cao, Y., Liu, T., Cui, L., and Xu, W., 2020, Blood-stage malaria parasites manipulate host innate immune responses through the induction of sFGL2, Sci. Adv., 6 (9), eaay9269.

[26] Peters, W., Portus, J.H., and Robinson, B.L., 1975, The chemotherapy of rodent malaria, XXII. The value of drug-resistant strain of P. berghei in screening for bloof schizontocidal activity, Ann. Trop. Med. Parasitol., 69 (2), 155–171.

[27] Sianturi, J., Manabe, Y., Li, H.S., Chiu, L.T., Chang, T.C., Tokunaga, K., Kabayama, K., Tanemura, M., Takamatsu, S., Miyoshi, E., Hung, S.C., and Fukase, K., 2019, Development of α-gal–antibody conjugates to increase immune response by recruiting natural antibodies, Angew. Chem., Int. Ed., 58 (14), 4526–4530.

[28] Jiménez-Díaz, M.B., Viera, S., Ibáñez, J., Mulet, T., Magán-Marchal, N., Garuti, H., Gomez, V., Cortés-Gil, L., Martinez, A., Ferrer, S., Fraile, M.T., Calderón, F., Fernández, E., Shultz, L.D., Leroy, D., Wilson, D.M., García-Bustos, J.F., Gamo, F.J., and Angulo-Barturen, I., 2013, A new in vivo screening paradigm to accelerate antimalarial drug discovery, PLoS One, 8 (6), e66967.

[29] Fang, Y., He, X., Zhang, P., Shen, C., Mwangi, J., Xu, C., Mo, G., Lai, R., and Zhang, Z., 2019, In vitro and in vivo antimalarial activity of LZ1, a peptide derived from snake cathelicidin, Toxins, 11 (7), 379.

[30] Corral, M.G., Leroux, J., Stubbs, K.A., and Mylne, J.S., 2017, Herbicidal properties of antimalarial drugs, Sci. Rep., 7 (1), 45871.

DOI: https://doi.org/10.22146/ijc.74481

Article Metrics

Abstract views : 2264 | views : 3156 | views : 813

Copyright (c) 2022 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Analytics View The Statistics of Indones. J. Chem.