Effect of Acetic Acid and/or Sodium Hydroxide Treatment towards Characters of Wonosari Natural Zeolite for Hydrotreatment of Castor Oil into Biofuel
Triyono Triyono(1), Wega Trisunaryanti(2*), Iip Izul Falah(3), Lailatul Rahmi(4)
(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(*) Corresponding Author
Abstract
Keywords
References
[1] Anuar, M.R., and Abdullah, A.Z., 2016, Challenges in biodiesel industry with regards to feedstock, environmental, social and sustainability issues: A critical review, Renewable Sustainable Energy Rev., 58, 208–223.
[2] Rabie, A.M., Shaban, M., Abukhadra, M.R., Hosny, R., Ahmed, S.A., and Negm, N.A., 2019, Diatomite supported by CaO/MgO nanocomposite as heterogeneous catalyst for biodiesel production from waste cooking oil, J. Mol. Liq., 279, 224–231.
[3] Ajala, O.E., Aberuagba, F., and Odetoye, T.E., 2015, Biodiesel: Sustainable energy replacement to petroleum-based diesel fuel – A review, ChemBioEng Rev., 2 (3), 145–156.
[4] Zhang, Q., Wang, T., Xu, T., Zhang, Q., and Ma, L., 2014, Production of liquid alkanes by controlling reactivity of sorbitol hydrogenation with a Ni/HZSM-5 catalyst in water, Energy Convers. Manage., 77, 262–268.
[5] Atabani, A.E., Silitonga, A.S., Ong, H.C., Mahlia, T.M.I., Masjuki, H.H., Badruddin, I.A., and Fayaz, H., 2013, Non-edible vegetable oils: A critical evaluation of oil extraction fatty acid compositions, biodiesel productions, characteristic, engine performance, and emissions production and refining technologies, Renewable Sustainable Energy Rev., 18, 211–245.
[6] Kamel, D.A., Farag, H.A., Amin, N.K., Zatout, A.A., and Ali, R.M., 2018, Smart utilization of jatropha (Jatropha curcas Linnaeus) seeds for biodiesel production: Optimization and mechanism, Ind. Crops Prod., 111, 407–413.
[7] Vorontsov, A.V., Valdés, H., and Smirniotis, P.G., 2019, Design of active sites in zeolite catalysts using modern semiempirical methods: The case of mordenite, Comput. Theor. Chem., 1166, 112572.
[8] Alver, B.E., and Esenli, F., 2017, Acid treated mordenites as adsorbents of C2H4 and H2 gases, Microporous Mesoporous Mater., 244, 67–73.
[9] Sousa, L.V., Silva, A.O.S., Silva, B.J.B., Quintela, P.H.L., Barbosa, C.B.M., Fréty, R., and Pacheco, J.G.A., 2018, Preparation of zeolite P by desilication and recrystallization of zeolites ZSM-22 and ZSM-35, Mater. Lett., 217, 259–262.
[10] Ahmad, M., Farhana, R., Raman, A.A.A., and Bhargava, S.K., 2016, Synthesis and activity evaluation of heterometallic nano oxides integrated ZSM-5 catalysts for palm oil cracking to produce biogasoline, Energy Convers. Manage., 119, 352–360.
[11] Zhao, X., Wei, L., Julson, J., Gu, Z., and Cao, Y., 2015, Catalytic cracking of inedible camelina oils to hydrocarbon fuels over bifunctional Zn/ZSM-5 catalysts, Korean J. Chem. Eng., 32 (8), 1528–1541.
[12] Žibert, J., Cedilnik, J., and Pražnikar, J., 2016, Particulate matter (PM10) patterns in Europe: An exploratory data analysis using non-negative matrix factorization, Atmos. Environ., 132, 217–228.
[13] Procházka, P., and Hönig, V., 2018, Economic analysis of diesel-fuel replacement by crude palm oil in Indonesian power plants, Energies, 11 (3), 504.
[14] De, S., and Luque, R., 2014, Upgrading of waste oils into transportation fuels using hydrotreating technologies, Biofuel Res. J., 1 (4), 107–109.
[15] Zarchin, R., Rabaev, M., Vidruk-Nehemya, R., Landau, M.V., and Herskowitz, M., 2015, Hydroprocessing of soybean oil on nickel-phosphide supported catalysts, Fuel, 139, 684–691.
[16] Bezergianni, S., Dimitriadis, A., and Meletidis, G., 2014, Effectiveness of CoMo and NiMo catalysts on co-hydroprocessing of heavy atmospheric gas oil-waste cooking oil mixtures, Fuel, 125, 129–136.
[17] Kristiani, A., Sudiyarmanto, S., Aulia, F., Hidayati, L.N., and Abimanyu, H., 2017, Metal supported on natural zeolite as catalysts for conversion of ethanol to gasoline, MATEC Web Conf., 101, 01001.
[18] Sriningsih, W., Saerodji, M.G., Trisunaryanti, W., Triyono, T., Armunanto, R., and Falah, I.I., 2014, Fuel production from LDPE plastic waste over natural zeolite supported Ni, Ni-Mo, Co and Co-Mo Metals, Procedia Environ. Sci., 20, 215–224.
[19] Sun, Q., Wang, N., and Yu, J., 2021, Advances in catalytic of zeolite-supported metal catalysts, Adv. Matter., 33 (51), 2104442.
[20] Trisunaryanti, W., Wijaya, K., Suryani, D., and Chasanah, U., 2021, “The Effect of HNO3 and/or NaOH Treatments on Characteristics of Mordenite” in Advances in Geopolymer-Zeolite Composites - Synthesis and Characterization, Eds. Vizureanu, P., and Krivenko, P., IntechOpen, Rijeka, 83–89.
[21] Anggoro, D.D., Oktavianty, H., Sasongko, S.B., and Buchori, L., 2020, Effect of dealumination on the acidity of zeolite Y and the yield of glycerol mono stearate (GMS), Chemosphere, 257, 127012.
[22] Chung, K.H., 2008, Dealumination of mordenites with acetic acid and their catalytic activity in the alkylation of cumene, Microporous Mesoporous Mater., 111 (1-3), 544–550.
[23] Muttaqii, M., Birawidha, C.D., Isnugroho, K., Amin, M., Hendro, Y., Istiqomah, A., and Dewangga, D., 2019, Pengaruh aktivasi secara kimia menggunakan larutan asam dan basa terhadap karakteristik zeolit alam, JRTI, 13 (2), 266–271.
[24] Bertrand-Drira, C., Cheng, X.W., Cacciaguerra, T., Trens, P., Melinte, G., Ersen, O., Minoux, D., Finiels, A., Fajula, F., and Gerardin, C., 2015, Mesoporous mordenites obtained by desilication: Mechanistic considerations and evaluation in catalytic oligomerization of pentene, Microporous Mesoporous Mater., 213, 142–149.
[25] Gea, S., Haryono, A., Andriayani, A., Sihombing, J.L., Pulungan, A.N., Nasution, T., Rahayu, R., and Hutapea, A.Y., 2020, The effect of chemical activation using base solution with various concentrations towards sarulla natural zeolite, Elkawnie, 6 (1), 85–95.
[26] Ates, A., 2018, Effect of alkali-treatment on the characteristics of natural zeolites with different compositions, J. Colloid Interface Sci., 523, 266–281.
[27] Triyono, T., Trisunaryanti, W., and Yusniyanti, F., 2020, Sonicated-assisted acid treatment of mordenite using acetic acid, Key Eng. Mater., 840, 520–525.
[28] Tišler, Z., Hrachovcová, K., Svobodová, E., Šafář, J., and Pelíšková, L., 2019, Acid and thermal treatment of alkali-activated zeolite foams, Minerals, 9 (12), 719.
[29] Wei, Y., Parmenrier, T.E., de Jong, K.P., and Zečević, J., 2015, Tailoring and visualizing the pore architecture of hierarchical zeolites, Chem. Soc. Rev., 44 (20), 7234−7235.
[30] Wijaya, K., Baobalabuana, G., Trisunaryanti, W., and Syoufian, A., 2013, Hydrotreatment of palm oil into biogasoline catalyzed by Cr/natural zeolite, Asian J. Chem., 25 (16), 8981−8986.
[31] Trisunaryanti, W., Triyono, T., Falah, I.I., Widyawati, D., and Yusniyanti, F., 2022, The effect of oxalic acid and NaOH treatments on the character of Wonosari natural zeolite as Ni, Cu, and Zn metal support catalyst for hydrocracking of castor oil, Biomass Convers. Biorefin., 2022, s13399-022-02779-5.
[32] Kurniawan, T., Muraza, O., Bakare, I.A., Sanhoob, M.A., and Al-Amer, A.M., 2018, Isomerization of n-butane over cost-effective mordenite catalyst frabicated via recrystallization of natural zeolite, Ind. Eng. Chem. Res., 57 (6), 1894−1902.
[33] Ramesh, K., Reddy, K.S., Rashmi, I., and Biswas, A.K., 2014, Porosity distribution, surface area and morphology of synthetic potassium zeolites: A SEM and N2 adsorption study, Commun. Soil Sci. Plant Anal., 45 (16), 2171−2181.
[34] Nurliati, G., Krisnandi, Y.K., Sihombing, R., and Salimin, Z., 2015, Studies of modification of zeolite by tandem acid-base treatments and its adsorptions performance towards thorium, Atom Indonesia, 41 (2), 87–95.
[35] Yusniyanti, F., Trisunaryanti, W., and Triyono, T., 2021, Acid-alkaline treatment of mordenite and its catalytic activity in the hydrotreatment of bio-oil, Indones. J. Chem., 21 (1), 37–45.
[36] Bernard, P., Stelmachowski, P., Broś, P., Makowski, W., and Kotarba, A., 2021, Demonstration of the influence of specific surface area on reaction rate in heterogeneous catalysis, J. Chem. Educ., 98 (3), 935–940.
[37] Trisunaryanti, W., Triyono, T., Purwono, S., Purwanti, S.A., and Sumbogo, S.D., 2021, Synthesis of mesoporous carbon from merbau sawdust as a nickel metal catalyst support for castor oil hydrocracking, Bull. Chem. React. Eng. Catal., 17 (1), 216–224.
DOI: https://doi.org/10.22146/ijc.73746
Article Metrics
Abstract views : 2141 | views : 1185 | views : 629Copyright (c) 2023 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.