Effect of Sensitive pH on Hydroxyapatite Properties Synthesized from Chicken Eggshell

https://doi.org/10.22146/ijc.72959

Ferli Septi Irwansyah(1), Azhari Yusuf(2), Diana Rakhmawaty Eddy(3), Risdiana Risdiana(4), Atiek Rostika Noviyanti(5*)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung–Sumedang Km. 21 Jatinangor, Sumedang 45363, West Java, Indonesia; Department of Chemistry Education, UIN Sunan Gunung Djati Bandung, Jl. A.H. Nasution No. 105, Bandung 40614, West Java, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung–Sumedang Km. 21 Jatinangor, Sumedang 45363, West Java, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung–Sumedang Km. 21 Jatinangor, Sumedang 45363, West Java, Indonesia
(4) Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung–Sumedang Km. 21 Jatinangor, Sumedang 45363, West Java, Indonesia
(5) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung–Sumedang Km. 21 Jatinangor, Sumedang 45363, West Java, Indonesia
(*) Corresponding Author

Abstract


The hydrothermal method has effectively synthesized hydroxyapatite (HA). This study aimed to analyze the effect of pH on the properties (purity, crystallinity, and size) of HA crystals. HA synthesis of chicken eggshells was carried out using the hydrothermal method at temperatures of 230 °C with pH 9 and 9.34. The characteristics of HA are determined by XRF, XRD, FTIR, and TEM. The composition of the most significant compound obtained from the results of XRF analysis is CaO (97.5%). The XRD analysis showed that the purity of HA with pH 9.00 and 9.34 obtained was 97.8 and 96.6%, with the crystallinity of 56.46 and 56.96%. It was also obtained that the size of crystal HA was 21.8 and 15.7 nm for samples synthesized at pH 9.00 and 9.34. The results showed that the purity and size of HA were affected by differences in the pH synthesis and were relatively the same for its crystallinity which directly affects the value lattice parameter. The properties of HA produced by the hydrothermal method have met the criteria for biomedical applications.

Keywords


crystal structure; eggshells; hydrothermal; pH; XRD

Full Text:

Full Text PDF


References

[1] Qaid, T.H., Ramesh, S., Yusof, F., Basirun, W.J., Ching, Y.C., Chandran, H., and Krishnasamy, S., 2019, Micro-arc oxidation of bioceramic coatings containing eggshell-derived hydroxyapatite on titanium substrate, Ceram. Int., 45 (15), 18371–18381.

[2] Sopyan, I., Pusparini, E., Ramesh, S., Tan, C.Y., Ching, Y.C., Wong, Y.H., Abidin, N.I.Z., Chandran, H., Ramesh, S., and Bang, L.T., 2017, Influence of sodium on the properties of sol-gel derived hydroxyapatite powder and porous scaffolds, Ceram. Int., 43 (15), 12263–12269.

[3] Ramesh, S., Natasha, A.N., Tan, C.Y., Bang, L.T., Ramesh, S., Ching, C.Y., and Chandran, H., 2016, Direct conversion of eggshell to hydroxyapatite ceramic by a sintering method, Ceram. Int., 42 (6), 7824–7829.

[4] Ramesh, S., Jeffrey, C.K.L., Tan, C.Y., Wong, Y.H., Ganesan, P., Ramesh, S., Kutty, M.G., Chandran, H., and Devaraj, P., 2016, Sintering behaviour and properties of magnesium orthosilicate-hydroxyapatite ceramic, Ceram. Int., 42 (14), 15756–15761.

[5] Medeiros, E.L.G., Gomes, D.S., Santos, A.M.C., Vieira, R.H., de Lima, I.L., Rocha, F.S., Castro-Filice, L.S., Medeiros, E.S., Neves, G.A., and Menezes, R.R., 2021, 3D nanofibrous bioactive glass scaffolds produced by one-step spinning process, Ceram. Int., 47 (1), 102–110.

[6] Windarti, T., Widjijono, W., and Nuryono, N., 2020, Deposition of hydroxyapatite on silica made from rice husk ash to produce the powder component of calcium phosphate cement, Indones. J. Chem., 21 (3), 588–597.

[7] Nurlidar, F., and Kobayashi, M., 2019, Succinylated bacterial cellulose induce carbonated hydroxyapatite deposition in a solution mimicking body fluid, Indones. J. Chem., 19 (4), 858–864.

[8] Ali, A.F., Alrowaili, Z.A., El-Giar, E.M., Ahmed, M.M., and El-Kady, A.M., 2021, Novel green synthesis of hydroxyapatite uniform nanorods via microwave-hydrothermal route using licorice root extract as template, Ceram. Int., 47 (3), 3928–3937.

[9] Ramesh, S., Loo, Z.Z., Tan, C.Y., Chew, W.J.K., Ching, Y.C., Tarlochan, F., Chandran, H., Krishnasamy, S., Bang, L.T., and Sarhan, A.A.D., 2018, Characterization of biogenic hydroxyapatite derived from animal bones for biomedical applications, Ceram. Int., 44 (9), 10525–10530.

[10] Gergely, G., Wéber, F., Lukács, I., Tóth, A.L., Horváth, Z.E., Mihály, J., and Balázsi, C., 2010, Preparation and characterization of hydroxyapatite from eggshell, Ceram. Int., 36 (2), 803–806.

[11] Ho, W.F., Hsu, H.C., Hsu, S.K., Hung, C.W., and Wu, S.C., 2013, Calcium phosphate bioceramics synthesized from eggshell powders through a solid state reaction, Ceram. Int., 39 (6), 6467–6473.

[12] Indira, J., and Sreeja, V., 2020, Synthesis of silver/hydroxyapatite/tryptophan nanocomposite particles by biological method, Mater. Today: Proc., 51, 1685–1689.

[13] Akram, M., Ahmed, R., Shakir, I., Ibrahim, W.A.W., and Hussain, R., 2013, Extracting hydroxyapatite and its precursors from natural resources, J. Mater. Sci., 49 (4), 1461–1475.

[14] Ng, C.K., Ng, Z.L., Ramesh, S., Tan, C.Y., Ting, C.H., Chuah, Y.D., and Sutharsini, U., 2020, Synthesis and properties of bio-waste-based hydroxyapatite via hydrothermal process, Materialwiss. Werkstofftech., 51 (6), 706–712.

[15] Krishnan G, R., Prabhakaran, K., and George, B.K., 2021, Biogenic magnetic nano hydroxyapatite: Sustainable adsorbent for the removal of perchlorate from water at near-neutral pH, J. Environ. Chem. Eng., 9 (6), 106316.

[16] Niakan, A., Ramesh, S., Ganesan, P., Tan, C.Y., Purbolaksono, J., Chandran, H., Ramesh, S., and Teng, W.D., 2015, Sintering behaviour of natural porous hydroxyapatite derived from bovine bone, Ceram. Int., 41 (2), 3024–3029.

[17] Bee, S.L., and Hamid, Z.A.A., 2020, Hydroxyapatite derived from food industry bio-wastes: Syntheses, properties and its potential multifunctional applications, Ceram. Int., 46 (11), 17149–17175.

[18] Yusuf, A., Muhammad, N.M., Noviyanti, A.R., and Risdiana, R., 2020, The effect of temperature synthesis on the purity and crystallinity of hydroxyapatite, Key Eng. Mater., 860, 228–233.

[19] Noviyanti, A.R., Rahayu, I., Fauzia, R.P., and Risdiana, R., 2021, The effect of Mg concentration to mechanical strength of hydroxyapatite derived from eggshell, Arabian J. Chem., 14 (4), 103032.

[20] Noviyanti, A.R., Akbar, N., Deawati, Y., Ernawati, E.E., Malik, Y.T., Fauzia, R.P., and Risdiana, R., 2020, A novel hydrothermal synthesis of nanohydroxyapatite from eggshell-calcium-oxide precursors, Heliyon, 6 (4), e03655.

[21] Noviyanti, A.R., Haryono, H., Pandu, R., and Eddy, D.R., 2017, Cangkang telur ayam sebagai sumber kalsium dalam pembuatan hidroksiapatit untuk aplikasi graft tulang, Chim. Nat. Acta, 5 (3), 107–111.

[22] Shi, H., Zhou, Z., Li, W., Fan, Y., Li, Z., and Wei, J., 2021, Hydroxyapatite based materials for bone tissue engineering: A brief and comprehensive introduction, Crystals, 11 (2), 149.

[23] Palanivelu, R., Mary Saral, A., and Ruban Kumar, A., 2014, Nanocrystalline hydroxyapatite prepared under various pH conditions, Spectrochim. Acta, Part A, 131, 37–41.

[24] Goh, K.W., Wong, Y.H., Ramesh, S., Chandran, H., Krishnasamy, S., Sidhu, A., and Teng, W.D., 2021, Effect of pH on the properties of eggshell-derived hydroxyapatite bioceramic synthesized by wet chemical method assisted by microwave irradiation, Ceram. Int., 47 (7), 8879–8887.

[25] Othman, R., Mustafa, Z., Loon, C.W., and Noor, A.F.M., 2016, Effect of calcium precursors and pH on the precipitation of carbonated hydroxyapatite, Procedia Chem., 19, 539–545.

[26] Bogdanoviciene, I., Tőnsuaadu, K., Mikli, V., Grigoraviciute-Puroniene, I., Beganskiene, A., and Kareiva, A., 2010, pH impact on the sol-gel preparation of calcium hydroxyapatite, Ca10(PO4)6(OH)2, using a novel complexing agent, DCTA, Cent. Eur. J., Chem., 8 (6), 1323–1330.

[27] Wang, P., Li, C., Gong, H., Jiang, X., Wang, H., and Li, K., 2010, Effects of synthesis conditions on the morphology of hydroxyapatite nanoparticles produced by wet chemical process, Powder Technol., 203 (2), 315–321.

[28] Rodríguez-Lugo, V., Karthik, T.V.K., Mendoza-Anaya, D., Rubio-Rosas, E., Villaseñor Cerón, L.S., Reyes-Valderrama, M.I., and Salinas-Rodríguez, E., 2018, Wet chemical synthesis of nanocrystalline hydroxyapatite flakes: Effect of pH and sintering temperature on structural and morphological properties, R. Soc. Open Sci., 5 (8), 180962.

[29] Bartonickova, E., Vojtisek, J., Tkacz, J., Porizka, J., Masilko, J., Moncekova, M., and Parizek, L., 2017, Porous HA/alumina composites intended for bone-tissue engineering, Mater. Tehnol., 51 (4), 631–636.

[30] Ratha, I., Datta, P., Balla, V.K., Nandi, S.K., and Kundu, B., 2021, Effect of doping in hydroxyapatite as coating material on biomedical implants by plasma spraying method: A review, Ceram. Int., 47 (4), 4426–4445.

[31] Saha, B., Yadav, S.K., and Sengupta, S., 2018, Synthesis of nano-Hap prepared through green route and its application in oxidative desulfurisation, Fuel, 222, 743–752.

[32] Müller, V., Pagnier, T., Tadier, S., Gremillard, L., Jobbagy, M., and Djurado, E., 2021, Design of advanced one-step hydroxyapatite coatings for biomedical applications using the electrostatic spray deposition, Appl. Surf. Sci., 541, 148462.

[33] Toibah, A.R., Misran, F., Shaaban, A., and Mustafa, Z., 2019, Effect of pH condition during hydrothermal synthesis on the properties of hydroxyapatite from eggshell waste, J. Mech. Eng. Sci., 13 (2), 4958–4969.

[34] Narendran, P., Rajendran, A., Garhnayak, M., Garhnayak, L., Nivedhitha, J., Devi, K.C., and Pattanayak, D.K., 2018, Influence of pH on wet-synthesis of silver decorated hydroxyapatite nanopowder, Colloids Surf., B, 169, 143–150.

[35] Weerasuriya, D.R.K., Wijesinghe, W.P.S.L., and Rajapakse, R.M.G., 2017, Encapsulation of anticancer drug copper bis(8-hydroxyquinoline) in hydroxyapatite for pH-sensitive targeted delivery and slow release, Mater. Sci. Eng. C, 71, 206–213.

[36] Hutabarat, G.S., Qodir, D.T., Setiawan, H., Akbar, N., and Noviyanti, A.R., 2019, Sintesis komposit hidroksiapatit-lantanum oksida (HA-La2O3) dengan metode hidrotermal secara in-situ dan ex-situ, ALCHEMY Jurnal Penelitian Kimia, 15 (2), 287–301.

[37] Rodríguez-Lugo, V., Salinas-Rodríguez, E., Vázquez, R.A., Alemán, K., and Rivera, A.L., 2017, Hydroxyapatite synthesis from a starfish and β-tricalcium phosphate using a hydrothermal method, RSC Adv., 7 (13), 7631–7639.

[38] Noviyanti, A.R., Hastiawan, I., Yuliyati, Y.B., Rahayu, I., Rosyani, D., and Syarif, D.G., 2017, LSO apatite-YSZ composite as a solid electrolyte for solid oxide fuel cells, AIP Conf. Proc., 1848, 040001.

[39] Qi, Y., Shen, J., Jiang, Q., Jin, B., Chen, J., and Zhang, X., 2015, The morphology control of hydroxyapatite microsphere at high pH values by hydrothermal method, Adv. Powder Technol., 26 (4), 1041–1046.

[40] Nadimpalli, N.K.V., Bandyopadhyaya, R., and Runkana, V., 2018, Thermodynamic analysis of hydrothermal synthesis of nanoparticles, Fluid Phase Equilib., 456, 33–45.

[41] Liu, J., Ye, X., Wang, H., Zhu, M., Wang, B., and Yan, H., 2003, The influence of pH and temperature on the morphology of hydroxyapatite synthesized by hydrothermal method, Ceram. Int., 29 (6), 629–633.

[42] Vương, B.X., and Linh, T.H., 2019, The extraction of pure hydroxyapatite from porcine bone by thermal process, Metall. Mater. Eng., 25 (1), 47–58.

[43] Huixia, L., Yong, L., Lanlan, L., Yanni, T., Qing, Z., and Kun, L., 2016, Development of ammonia sensors by using conductive polymer/hydroxyapatite composite materials, Mater. Sci. Eng., C, 59, 438–444.

[44] Rodríguez-Lugo, V., Karthik, T.V.K., Mendoza-Anaya, D., Rubio-Rosas, E., Villaseñor Cerón, L.S., Reyes-Valderrama, M.I., and Salinas-Rodríguez, E., 2018, Wet chemical synthesis of nanocrystalline hydroxyapatite flakes: Effect of pH and sintering temperature on structural and morphological properties, R. Soc. Open Sci., 5 (8), 180962.

[45] Varadavenkatesan, T., Vinayagam, R., Pai, S., Kathirvel, B., Pugazhendhi, A., and Selvaraj, R., 2021, Synthesis, biological and environmental applications of hydroxyapatite and its composites with organic and inorganic coatings, Prog. Org. Coat., 151, 106056.



DOI: https://doi.org/10.22146/ijc.72959

Article Metrics

Abstract views : 2605 | views : 2366


Copyright (c) 2022 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.