Activity and Selectivity of Mesoporous Silica Catalyst for Hydrocracking Process of Used Palm Oil into Biogasoline

Ahmad Suseno(1), Karna Wijaya(2*), Edy Heraldy(3), Lukman Hakim(4), Wahyu Dita Saputri(5), Gunawan Gunawan(6)

(1) Department of Chemistry, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. H. Soedarto, S.H., Tembalang, Semarang 50275, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Surakarta 57126, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Brawijaya University, Jl. Veteran, Malang 65145, Indonesia
(5) Research Center for Quantum Physics, National Research and Innovation Agency (BRIN), Habibie Science and Technology Complex (Puspiptek), Serpong 15314, South Tangerang, Indonesia
(6) Department of Chemistry, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. H. Soedarto, S.H., Tembalang, Semarang 50275, Indonesia
(*) Corresponding Author


Research on the synthesis of mesoporous silica catalyst, as well as its activity and selectivity in the hydrocracking of used palm oil, has been carried out. The research involved the preparation of mesoporous silica catalyst by varying the volume ratio of TEOS:CTAB at 2:1, 4:1, and 8:1, then calcined at 500 °C. Synthesis success was confirmed by FTIR, XRD, SEM-EDX, GSA, and hydrocracking selectivity by GC-MS analysis. The results showed that the more TEOS added, the silica bond composition, crystallinity, pore size, and product selectivity increased. The best catalyst performance was obtained from a TEOS:CTAB ratio of 8:1 at a calcination temperature of 500 °C (MCT81-500), which indicated the presence of Si-OH and Si-O-Si groups with a Si percentage of 45.31%, pore size diameter of 31.912 nm, and a total pore volume of 0.040 cc/g. In addition, the application of MCT81-500 in the hydrocracking process of used palm oil can produce a bio-gasoline (C5-C12) and kerosene (C12-C15) of 92.24 and 7.76 wt.%, respectively. This study shows that mesoporous silica has good potential for catalytic activity to convert used cooking oil waste into an environmentally friendly energy source.


mesoporous silica; hydrocracking; palm oil; biogasoline

Full Text:

Full Text PDF


[1] Yaqoob, H., Teoh, Y.H., Goraya, T.S., Sher, F., Jamil, M.A., Rashid, T., and Yar, K.A., 2021, Energy evaluation and environmental impact assessment of transportation fuels in Pakistan, Case Stud. Chem. Environ. Eng., 3, 100081.

[2] Altarazi, Y.S.M., Abu Talib, A.R., Yu, J., Gires, E., Abdul Ghafir, M.F., Lucas, J., and Yusaf, T., 2022, Effects of biofuel on engines performance and emission characteristics: A review, Energy, 238, 121910.

[3] Kabeyi, M.J.B., and Olanrewaju, O.A., 2022, Biogas production and applications in the sustainable energy transition, J. Energy, 2022, 8750221.

[4] Hanafi, S.A., Elmelawy, M.S., El-Syed, H.A., and Shalaby, N.H., 2015, Hydrocracking of waste cooking oil as renewable fuel on NiW/SiO2-Al2O3 catalyst, J. Adv. Catal. Sci. Technol., 2 (1), 27–37.

[5] Dik, P.P., Danilova, I.G., Golubev, I.S., Kazakov, M.O., Nadeina, K.A., Budukva, S.V., Pereyma, V.Y., Klimov, O.V., Prosvirin, I.P., Gerasimov, E.Y., Bok, T.O., Dobryakova, I.V., Knyazeva, E.E., Ivanova, I.I., and Noskov, A.S., 2019, Hydrocracking of vacuum gas oil over NiMo/zeolite-Al2O3: Influence of zeolite properties, Fuel, 237, 178–190.

[6] Sarvi, M.N., Budianto Bee, T., Gooi, C.K., Woonton, B.W., Gee, M.L., and O’Connor, A.J., 2014, Development of functionalized mesoporous silica for adsorption and separation of dairy proteins, Chem. Eng. J., 235, 244–251.

[7] Tao, Y., Ju, E., Ren, J., and Qu, X., 2015, Bifunctionalized mesoporous silica-supported gold nanoparticles: Intrinsic oxidase and peroxidase catalytic activities for antibacterial applications, Adv. Mater., 27 (6), 1097–1104.

[8] Lee, Y.C., Dutta, S., and Wu, K.C.W., 2014, Integrated, cascading enzyme-/chemocatalytic cellulose conversion using catalysts based on mesoporous silica nanoparticles, ChemSusChem, 7 (12), 3241–3246.

[9] Gao, W., Hu, Y., Xu, L., Liu, M., Wu, H., and He, B., 2018, Dual pH and glucose sensitive gel gated mesoporous silica nanoparticles for drug delivery, Chin. Chem. Lett., 29 (12), 1795–1798.

[10] Lai, S.M., Lai, H.Y., and Chou, M.Y., 2014, A facile approach for the tunable wormlike or ordered pore morphology of mesoporous silica: Effect of catalyst types and polyethylene glycol, Microporous Mesoporous Mater., 196, 31–40.

[11] Hikosaka, R., Nagata, F., Tomita, M., and Kato, K., 2016, Adsorption and desorption characteristics of DNA onto the surface of amino functional mesoporous silica with various particle morphologies, Colloids Surf., B, 140, 262–268.

[12] Ng, T.N., Chen, X.Q., and Yeung, K.L., 2015, Direct manipulation of particle size and morphology of ordered mesoporous silica by flow synthesis, RSC Adv., 5 (18), 13331–13340.

[13] Knežević, N., and Durand, J.O., 2015, Large pore mesoporous silica nanomaterials for application in delivery of biomolecules, Nanoscale, 7 (6), 2199–2209.

[14] Wei, J., Sun, Z., Luo, W., Li, Y., Elzatahry, A.A., Al-Enizi, A.M., Deng, Y., and Zhao, D., 2017, New insight into the synthesis of large-pore ordered mesoporous materials, J. Am. Chem. Soc., 139 (5), 1706–1713.

[15] Wang, X., Zhang, Y., Luo, W., Elzatahry, A.A., Cheng, X., Alghamdi, A., Abdullah, A.M., Deng, Y., and Zhao, D., 2016, Synthesis of ordered mesoporous silica with tunable morphologies and pore sizes via a nonpolar solvent-assisted Stöber method, Chem. Mater., 28 (7), 2356–2362.

[16] Zhang, W., Zuo, H., Cheng, Z., Shi, Y., Guo, Z., Meng, N., Thomas, A., and Liao, Y., 2022, Macroscale conjugated microporous polymers: controlling versatile functionalities over several dimensions, Adv. Mater., 34 (18), 2104952.

[17] Luo, W., Zhao, T., Li, Y., Wei, J., Xu, P., Li, X., Wang, Y., Zhang, W., Elzatahry, A.A., Alghamdi, A., Deng, Y., Wang, L., Jiang, W., Liu, Y., Kong, B., and Zhao, D., 2016, A micelle fusion-aggregation assembly approach to mesoporous carbon materials with rich active sites for ultrasensitive ammonia sensing, J. Am. Chem. Soc., 138 (38), 12586–12595.

[18] Yuan, K., Che, R., Cao, Q., Sun, Z., Yue, Q., and Deng, Y., 2015, Designed fabrication and characterization of three-dimensionally ordered arrays of core-shell magnetic mesoporous carbon microspheres, ACS Appl. Mater. Interfaces, 7 (9), 5312–5319.

[19] Gao, M., Zeng, J., Liang, K., Zhao, D., and Kong, B., 2020, Interfacial assembly of mesoporous silica‐based optical heterostructures for sensing applications, Adv. Funct. Mater., 30 (9), 1906950.

[20] Nasir, T., Herzog, G., Hébrant, M., Despas, C., Liu, L., and Walcarius, A., 2018, Mesoporous silica thin films for improved electrochemical detection of paraquat, ACS Sens., 3 (2), 484–493.

[21] Liu, Y., Shen, D., Chen, G., Elzatahry, A.A., Pal, M., Zhu, H., Wu, L., Lin, J., Al-Dahyan, D., Li, W., and Zhao, D., 2017, Mesoporous silica thin membranes with large vertical mesochannels for nanosize-based separation, Adv. Mater., 29 (35), 1702274.

[22] Upare, D.P., Park, S., Kim, M.S., Kim, J., Lee, D., Lee, J., Chang, H., Choi, W., Choi, S., Jeon, Y.P., Park, Y.K., and Lee, C.W., 2016, Cobalt promoted Mo/beta zeolite for selective hydrocracking of tetralin and pyrolysis fuel oil into monocyclic aromatic hydrocarbons, J. Ind. Eng. Chem., 35, 99–107.

[23] Upare, D.P., Park, S., Kim, M.S., Jeon, Y.P., Kim, J., Lee, D., Lee, J., Chang, H., Choi, S., Choi, W., Park, Y.K., and Lee, C.W., 2017, Selective hydrocracking of pyrolysis fuel oil into benzene, toluene and xylene over CoMo/beta zeolite catalyst, J. Ind. Eng. Chem., 46, 356–363.

[24] Munir, D., and Usman, M.R., 2016, Synthesis and characterization of mesoporous hydrocracking catalysts, IOP Conf. Ser.: Mater. Sci. Eng., 146, 012007.

[25] Williams, S., Neumann, A., Bremer, I., Su, Y., Dräger, G., Kasper, C., and Behrens, P., 2015, Nanoporous silica nanoparticles as biomaterials: Evaluation of different strategies for the functionalization with polysialic acid by step-by-step cytocompatibility testin, J. Mater. Sci.: Mater. Med., 26 (3), 125.

[26] Porrang, S., Davaran, S., Rahemi, N., Allahyari, S., and Mostafavi, E., 2022, How advancing are mesoporous silica nanoparticles? A comprehensive review of the literature, Int. J. Nanomed., 17, 1803–1827.

[27] Huo, Q., Margolese, D.I., and Stucky, G.D., 1996, Surfactant control of phases in the synthesis of mesoporous silica-based materials, Chem. Mater., 8 (5), 1147–1160.

[28] Lai, C.Y, 2014, Mesoporous silica nanomaterials applications in catalysis, J. Thermodyn. Catal., 5 (1), 1000e124.

[29] Lu, M., Liu, X., Li, Y., Nie, Y., Lu, X., Deng, D., Xie, Q., and Ji, J., 2016, Hydrocracking of bio-alkanes over Pt/Al-MCM-41 mesoporous molecular sieves for bio-jet fuel production, J. Renewable Sustainable Energy, 8 (5), 053103.

[30] Nurmalasari, N., Trisunaryanti, W., Sutarno, S., and Falah, I., 2016, Mesoporous silica impregnated by Ni and NiMo as catalysts for hydrocracking of waste lubricant, Int. J. ChemTech Res., 9 (9), 607–614.

[31] Yang, L., Wu, H., Jia, J., Ma, B., and Li, J., 2017, Synthesis of bimodal mesoporous silica with coexisting phases by co-hydrothermal aging route with P123 containing gel and F127 containing gel, Microporous Mesoporous Mater., 253, 151–159.

[32] Wijaya, K., Saputri, W.D., Aziz, I.T.A., Wangsa, W., Heraldy, E., Hakim, L., Suseno, A., and Utami, M., 2021, Mesoporous silica preparation using sodium bicarbonate as template and application of the silica for hydrocracking of used cooking oil into biofuel, Silicon, 14 (4), 1583–1591.

[33] Sirajudin, N., Jusoff, K., Yani, S., Ifa, L., and Roesyadi, A., 2013, Biofuel production from catalytic cracking of palm oil, World Appl. Sci. J., 26 (26), 67–71.

[34] Tambun, R., Gusti, O.N., Nasution, M.A., and Saptawaldi, R.P., 2017, Biofuel production from palm olein by catalytic cracking process using ZSM-5 catalyst, JBAT, 6 (1), 50–55.

[35] Salamah, S., Trisunaryanti, W., Kartini, I., and Purwono, S., 2021, Hydrocracking of waste cooking oil into biofuel using mesoporous silica from Parangtritis beach sand synthesized with sonochemistry, Silicon, 14 (7), 3583–3590.

[36] Liang, J., Liang, Z., Zou, R., and Zhao, Y., 2017, Heterogeneous catalysis in zeolites, mesoporous silica, and metal–organic frameworks, Adv. Mater., 29 (30), 1701139

[37] Guillet-Nicolas, R., Bérubé, F., Thommes, M., Janicke, M.T., and Kleitz, F., 2017, Selectively tuned pore condensation and hysteresis behavior in mesoporous SBA-15 silica: Correlating material synthesis to advanced gas adsorption analysis, J. Phys. Chem. C, 121 (44), 24505–24526.

[38] Trisunaryanti, W., Triyono, T., Falah, I.I., Siagian, A.D., and Marsuki, M.F., 2018, Synthesis of Ce-mesoporous silica catalyst and its lifetime determination for the hydrocracking of waste lubricant, Indones. J. Chem., 18 (3), 441–447.

[39] Schreiber, M.W., Rodriguez-Nino, D., Gutiérrez, O.Y., and Lercher, J.A., 2016, Hydrodeoxygenation of fatty acid esters catalyzed by Ni on nano-sized MFI type zeolites, Catal. Sci. Technol., 6 (22), 7976–7984.

[40] Istadi, I., Riyanto, T., Khofiyanida, E., Buchori, L., Anggoro, D.D., Sumantri, I., Putro, B.H.S., and Firnanda, A.S., 2021, Low-oxygenated biofuels production from palm oil through hydrocracking process using the enhanced Spent RFCC catalysts, Bioresour. Technol. Rep., 14, 100677.

[41] Istadi, I., Riyanto, T., Buchori, L., Anggoro, D.D., Gilbert, G., Meiranti, K.A., and Khofiyanida, E., 2020, Enhancing Brønsted and Lewis acid sites of the utilized spent RFCC catalyst waste for the continuous cracking process of palm oil to biofuels, Ind. Eng. Chem. Res., 59 (20), 9459–9468.

[42] Li, Y., Hou, C., Jiang, J., Zhang, Z., Zhao, C., Page, A.J., and Ke, Z., 2016, General H2 activation modes for Lewis acid-transition metal bifunctional catalysts, ACS Catal., 6 (3), 1655–1662.

[43] Weitkamp, J., 2012, Catalytic hydrocracking—Mechanisms and versatility of the process, ChemCatChem, 4 (3), 292–306.

[44] Aireddy, D.R., and Ding, K., 2022, Heterolytic dissociation of H2 in heterogeneous catalysis, ACS Catal., 12 (8), 4707–4723.

[45] Wang, D.K., and da Costa, J.C.D., 2018, "Silica, Template Silica and Metal Oxide Silica Membranes for High Temperature Gas Separation" in Advanced Materials for Membrane Fabrication and Modification, Eds. Gray, S., Tsuru, T., Cohen, Y., and Lau, W.J., CRC Press, Boca Raton, Florida, 231–274.

[46] Chiang, Y.D., Lian, H.Y., Leo, S.Y., Wang, S.G., Yamauchi, Y., and Wu, K.C.W., 2011, Controlling particle size and structural properties of mesoporous silica nanoparticles using the Taguchi method, J. Phys. Chem. C, 115 (27), 13158–13165.


Article Metrics

Abstract views : 2520 | views : 1592

Copyright (c) 2023 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Analytics View The Statistics of Indones. J. Chem.