Improvement of Mechanical, Thermal, and Morphological Properties of Organo-Precipitated Calcium Carbonate Filled LLDPE/Cyclic Natural Rubber Composites

https://doi.org/10.22146/ijc.68888

Ahmad Hafizullah Ritonga(1), Novesar Jamarun(2*), Syukri Arief(3), Hermansyah Aziz(4), Denny Akbar Tanjung(5), Boy Isfa(6)

(1) Department of Chemistry, University of Andalas, Limau Manis, Padang 25163, West Sumatera, Indonesia; Department of Chemistry, University of Sari Mutiara Indonesia, Medan 20123, North Sumatera, Indonesia
(2) Department of Chemistry, University of Andalas, Limau Manis, Padang 25163, West Sumatera, Indonesia
(3) Department of Chemistry, University of Andalas, Limau Manis, Padang 25163, West Sumatera, Indonesia
(4) Department of Chemistry, University of Andalas, Limau Manis, Padang 25163, West Sumatera, Indonesia
(5) Department of Chemistry, University of Andalas, Limau Manis, Padang 25163, West Sumatera, Indonesia; Department of Agrotechnology, University of Medan Area, Medan 20223, North Sumatera, Indonesia
(6) Department of Chemistry, University of Andalas, Limau Manis, Padang 25163, West Sumatera, Indonesia
(*) Corresponding Author

Abstract


This study investigates the improvement of the mechanical, thermal, and morphological properties of linear low-density polyethylene (LLDPE)/cyclic natural rubber (CNR) after the addition of organo-precipitated calcium carbonate (O-PCC). The impact on the properties of the LLDPE/CNR/LLDPE-g-OA/O-PCC composites was investigated by a series of empirical experiments. First, the polymer composite was blended in the molten state using an internal mixer with a heating temperature of 160 °C and a rotation speed of 100 rpm. The LLDPE was placed in a chamber of internal mixer until melted, followed by CNR, LLDPE-g-OA, and O-PCC. The polymer composites with an O-PCC concentration of 5% obtained the optimal mechanical properties compared to other variations, with a tensile strength of 17.17 MPa and Young's modulus of 252.68 MPa. The presence of O-PCC resulted in better thermal stability and a change in the melting point temperature of 124 °C. The FTIR spectra of the polymer composite showed the specific characteristics of O-PCC at 872.1 cm–1. The morphology of the polymer composite indicates that the O-PCC is evenly dispersed in the polymer composite.


Keywords


O-PCC; LLDPE; CNR; LLDPE-g-OA; filler

Full Text:

Full Text PDF


References

[1] Aritonang, B., Tamrin, T., Wirjosentono, B., and Eddiyanto, E., 2019, Grafting of oleic acid on cyclic natural rubber resiprene-35 using dicumyl peroxide initiator and divinylbenzene compatibilizers for paint binder in polyamide thermoplastics, Orient. J. Chem., 35 (1), 173–179.

[2] Rahayu, I., Zainuddin, A., and Hendrana, S., 2020, Improved maleic anhydride grafting to linear low density polyethylene by microencapsulation method, Indones. J. Chem., 20 (5), 1110–1118.

[3] Mahendra, I.P., Wirjosentono, B., Tamrin, T., Ismail, H., Mendez, J.A., and Causin, V., 2019, The influence of maleic anhydride-grafted polymers as compatibilizer on the properties of polypropylene and cyclic natural rubber blends, J. Polym. Res., 26 (9), 215.

[4] Pang, A.L., Ismail, H., and Abu Bakar, A., 2020, Effect of lysine treatment on the properties of linear low-density polyethylene/poly(vinyl alcohol)/kenaf composites, BioResources, 15 (1), 1915–1926.

[5] Pang, A.L., Ismail, H., and Abu Bakar, A., 2018, Mechanical, morphological, and thermal properties of kenaf filled linear low‐density polyethylene/poly(vinyl alcohol) composites: Effect of chemical treatment, J. Vinyl Addit. Technol., 24, E164–E171.

[6] Fernando, N.A.S., and Thomas, N.L., 2012, Investigation of precipitated calcium carbonate as a processing aid and impact modifier in poly(vinyl chloride), Polym. Eng. Sci., 52 (11), 2369–2374.

[7] Zapata, P.A., Palza, H., Díaz, B., Armijo, A., Sepúlveda, F., Ortiz, J.A., Ramírez, M.P., and Oyarzún, C., 2019, Effect of CaCO3 nanoparticles on the mechanical and photo-degradation properties of LDPE, Molecules, 24 (1), 126.

[8] Lourenço, A.F., Gamelas, J.A.F., and Ferreira, P.J., 2015, Precipitated calcium carbonate modified by the layer-by-layer deposition method–Its potential as papermaking filler, Chem. Eng. Res. Des., 104, 807–813.

[9] Declet, A., Reyes, E., and Suárez, O.M., 2016, Calcium carbonate precipitation: A review of the carbonate crystallization process and applications in bioinspired composites, Rev. Adv. Mater. Sci., 44, 87–107.

[10] Wardhani, S., Prasetia, F., Khunur, M.M., Purwonugroho, D., and Prananto, Y.P., 2018, Effect of CO2 flow rate and carbonation temperature in the synthesis of crystalline precipitated calcium carbonate (PCC) from limestone, Indones. J. Chem., 18 (4), 573–579.

[11] Piskin, S., and Dere Özdemir, O., 2012, Effect of process conditions on crystal structure of precipitated calcium carbonate (CaCO3) from fly ash: Na2CO3 preparation conditions, Int. J. Biol. Ecol. Environ. Sci., 1 (6), 2277–4394.

[12] Erdogan, N., and Eken, H.A., 2017, Precipitated calcium carbonate production, synthesis and properties, Physicochem. Probl. Miner. Process., 53 (1), 57–68.

[13] Sisca, V., Deska, A., Syukri, S., Zilfa, Z., and Jamarun, N., 2021, Synthesis and characterization of CaO limestone from Lintau Buo supported by TiO2 as a heterogeneous catalyst in the production of biodiesel, Indones. J. Chem., 21 (4), 979–989.

[14] Lin, Y., and Chan, C.M., 2012, “Calcium Carbonate Nanocomposites” in Advances in Polymer Nanocomposites, Woodhead Publishing, Cambridge, UK, 55–90.

[15] Ouarhim, W., Semlali Aouragh Hassani, F.Z., Bouhfid, R., Thomas, S., Sarathchandran, C., and Chandran, N., 2020, “Rheology of Polymer Nanocomposites” in Rheology of Polymer Blends and Nanocomposites, Elsevier, Amsterdam, Netherlands, 73–96.

[16] de Oliveira, A.G., Moreno, J.F., de Sousa, A.M.F., Escócio, V.A., de Oliveira Cavalcanti Guimarães, M.J., and da Silva, A.L.N., 2019, Composites based on high-density polyethylene, polylactide and calcium carbonate: Effect of calcium carbonate nanoparticles as co-compatibilizers, Polym. Bull., 77 (6), 2889–2904.

[17] Liu, M., Liu, Z., Ding, S., Li, S., and Zhang, L., 2003, Graft copolymerization of oleic acid onto low-density polyethylene in the molten state, J. Appl. Polym. Sci., 90 (12), 3299–3304.

[18] Aritonang, B., Tamrin, T., Wirjosentono, B., and Eddiyanto, E., 2020, Effect of graft copolymerization of oleic acid on to cyclic natural rubber in polyamide, Case Stud. Therm. Eng., 21, 100690.

[19] dos Anjos, E.G.R., Backes, E.H., Marini, J., Pessan, L.A., Montagna, L.S., and Passador, F.R., 2019, Effect of LLDPE-g-MA on the rheological, thermal, mechanical properties and morphological characteristic of PA6/LLDPE blends, J. Polym. Res., 26 (6), 134.

[20] Sisca, V., Tanjung, D.A., Syukri, S., Zilfa, Z., and Jamarun, N., 2021, Catalytic activity of precipitated calcium carbonate for biodiesel production, Rasayan J. Chem., 14 (3), 1587–1593.

[21] Doufnoune, R., Haddaoui, N., and Riahi, F., 2008, Effects of coupling agents on the tensile properties of calcium carbonate filled LDPE compatibilized with maleic anhydride-g-LDPE (Part I), Int. J. Polym. Mater. Polym. Biomater., 57 (4), 295–318.

[22] Pang, A.L., Ismail, H., and Bakar, A.A., 2018, Linear low density polyethylene/poly(vinyl alcohol)/kenaf composites: Effect of natural weathering on functional group, weight loss characteristics, tensile, morphological and thermal properties, Sains Malays., 47 (3), 571–580.



DOI: https://doi.org/10.22146/ijc.68888

Article Metrics

Abstract views : 3656 | views : 2772


Copyright (c) 2021 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.