Computational Evaluation of Intermolecular Interaction in Poly(Styrene-Maleic Acid)-Water Complexes Using Density Functional Theory
Daru Seto Bagus Anugrah(1*), Laura Virdy Darmalim(2), Permono Adi Putro(3), Liana Dewi Nuratikah(4), Nurwarrohman Andre Sasongko(5), Parsaoran Siahaan(6), Adi Yulandi(7)
(1) Department of Biotechnology, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, BSD Campus, Tangerang 15345, Indonesia
(2) Department of Biotechnology, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, BSD Campus, Tangerang 15345, Indonesia
(3) Department of Physics, Faculty of Mathematics and Natural Sciences, IPB University, Jl. Meranti, Kampus IPB Dramaga, Bogor 16680, Indonesia
(4) Department of Chemistry, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. H. Soedarto, S.H., Tembalang, Semarang 50275, Indonesia
(5) Department of Chemistry, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. H. Soedarto, S.H., Tembalang, Semarang 50275, Indonesia
(6) Department of Chemistry, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. H. Soedarto, S.H., Tembalang, Semarang 50275, Indonesia
(7) Department of Biotechnology, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, BSD Campus, Tangerang 15345, Indonesia
(*) Corresponding Author
Abstract
The high application of Poly(styrene-maleic acid) (PSMA) in an aqueous environment, such as biomedical purposes, makes the interaction between PSMA and water molecules interesting to be investigated. This study evaluated the conformation, the hydrogen bond network, and the stabilities of all the possible intermolecular interactions between PSMA with water (PSMA−(H2O)n, n = 1–5). All calculations were executed using the density functional theory (DFT) method at B3LYP functional and the 6–311G** basis set. The energy interaction of PSMA–(H2O)5 complex was –56.66 kcal/mol, which is classified as high hydrogen bond interaction. The Highest Occupied Molecular Orbital (HOMO) – Lowest Unoccupied Molecular Orbital (LUMO) energy gap decreased with the rise in the number of H2O molecules, representing a more reactive complex. The strongest hydrogen bonding in PSMA–(H2O)5 wasformed through the interaction on O72···O17–H49 with stabilizing energy of 50.32 kcal/mol, that analyzed by natural bond orbital (NBO) theory. The quantum theory atoms in molecules (QTAIM) analysis showed that the hydrogen bonding (EHB) value on O72···O17–H49 was –14.95 kcal/mol. All computational data revealed that PSMA had moderate to high interaction with water molecules that indicated the water molecules were easily transported and kept in the PSMA matrix.
Keywords
References
[1] Anugrah, D.S.B., Ramesh, K., Kim, M., Hyun, K., and Lim, K.T., 2019, Near-infrared light-responsive alginate hydrogels based on diselenide-containing cross-linkage for on demand degradation and drug release, Carbohydr. Polym., 223, 115070.
[2] Sung, Y.K., and Kim, S.W., 2020, Recent advances in polymeric drug delivery systems, Biomater. Res., 24 (1), 12.
[3] Jia, Y.G., Jin, J., Liu, S., Ren, L., Luo, J., and Zhu, X.X., 2018, Self-healing hydrogels of low molecular weight poly(vinyl alcohol) assembled by host-guest recognition, Biomacromolecules, 19 (2), 626–632.
[4] Deák, Á., Sebők, D., Csapó, E., Bérczi, A., Dékány, I., Zimányi, L., and Janovák, L., 2019, Evaluation of pH-responsive poly(styrene-co-maleic acid) copolymer nanoparticles for the encapsulation and pH-dependent release of ketoprofen and tocopherol model drugs, Eur. Polym. J., 114, 361–368.
[5] Larson, N., Greish, K., Bauer, H., Maeda, H., and Ghandehari, H., 2011, Synthesis and evaluation of poly(styrene-co-maleic acid) micellar nanocarriers for the delivery of tanespimycin, Int. J. Pharm., 420 (1), 111–117.
[6] Fang, J., Gao, S., Islam, R., Nema, H., Yanagibashi, R., Yoneda, N., Watanabe, N., Yasuda, Y., Nuita, N., Zhou, J.R., and Yokomizo, K., 2021, Styrene maleic acid copolymer-based micellar formation of temoporfin (SMA@mTHPC) behaves as a nanoprobe for tumor-targeted photodynamic therapy with a superior safety, Biomedicines, 9 (10), 1493.
[7] Moghadam, P.N., Azaryan, E., and Zeynizade, B., 2010, Investigation of poly(styrene-alt-maleic anhydride) copolymer for controlled drug delivery of ceftriaxone antibiotic, J. Macromol. Sci., Part A: Pure Appl. Chem., 47 (8), 839–848.
[8] Anugrah, D.S.B., Patil, M.P., Li, X., Le, C.M.Q., Ramesh, K., Kim, G.D., Hyun, K., and Lim, K.T., 2020, Click-cross-linked, doxorubicin-loaded hydrogels based on poly(styrene-alt-maleic anhydride), eXPRESS Polym. Lett., 14 (3), 248–260.
[9] Safia, H., Ismahan, L., Abdelkrim, G., Mouna, C., Leila, N., and Fatiha, M., 2019, Density functional theories study of the interactions between host β-cyclodextrin and guest 8-anilinonaphthalene-1-sulfonate: Molecular structure, HOMO, LUMO, NBO, QTAIM and NMR analyses, J. Mol. Liq., 280, 218–229.
[10] Hammami, F., Ghalla, H., and Nasr, S., 2015, Intermolecular hydrogen bonds in urea-water complexes: DFT, NBO, and AIM analysis, Comput. Theor. Chem., 1070, 40–47.
[11] Venkataramanan, N.S., Suvitha, A., and Kawazoe, Y., 2017, Intermolecular interaction in nucleobases and dimethyl sulfoxide/water molecules: A DFT, NBO, AIM and NCI analysis, J. Mol. Graphics Modell., 78, 48–60.
[12] Deka, B.C., and Bhattacharyya, P.K., 2017, DFT study on host-guest interaction in chitosan–amino acid complexes, Comput. Theor. Chem., 1110, 40–49.
[13] Rahmawati, S., Radiman, C.L., and Martoprawiro, M.A., 2018, Density functional theory (DFT) and natural bond orbital (NBO) analysis of intermolecular hydrogen bond interaction in "Phosphorylated nata de coco - water", Indones. J. Chem., 18 (1), 173–178.
[14] Cortes, E., Márquez, E., Mora, J.R., Puello, E., Rangel, N., De Moya, A., and Trilleras, J., 2019, Theoretical study of the adsorption process of antimalarial drugs into acrylamide-base hydrogel model using DFT methods: The first approach to the rational design of a controlled drug delivery system, Processes, 7 (7), 396.
[15] Costa, M.P.M., Prates, L.M., Baptista, L., Cruz, M.T.M., and Ferreira, I.L.M., 2018, Interaction of polyelectrolyte complex between sodium alginate and chitosan dimers with a single glyphosate molecule: A DFT and NBO study, Carbohydr. Polym., 198, 51–60.
[16] Siahaan, P., Sasongko, N.A., Lusiana, R.A., Prasasty, V.D., and Martoprawiro, M.A., 2021, The validation of molecular interaction among dimer chitosan with urea and creatinine using density functional theory: In application for hemodyalisis membrane, Int. J. Biol. Macromol., 168, 339–349.
[17] Deka, B.C., and Bhattacharyya, P.K., 2015, Understanding chitosan as a gene carrier: A DFT study, Comput. Theor. Chem., 1051, 35–41.
[18] Martins, J.B.L., Quintino, R.P., Politi, J.R.S., Sethio, D., Gargano, R., and Kraka, E., 2020, Computational analysis of vibrational frequencies and rovibrational spectroscopic constants of hydrogen sulfide dimer using MP2 and CCSD(T), Spectrochim. Acta, Part A, 239, 118540.
[19] Nikoo, S., and Rawson, J.M., 2021, Assessment of computational methods for calculating accurate non-covalent interaction energies in 1,2,3,5-dithiadiazolyl radicals, Cryst. Growth Des., 21 (9), 4878–4891.
[20] Lei, J., Zhang, J., Feng, G., Grabow, J.U., and Gou, Q., 2019, Conformational preference determined by inequivalent n-pairs: Rotational studies on acetophenone and its monohydrate, Phys. Chem. Chem. Phys., 21 (41), 22888–22894.
[21] Řezáč, J., and Hobza, P., 2016, Benchmark calculations of interaction energies in noncovalent complexes and their applications, Chem. Rev., 116 (9), 5038–5071.
[22] Li, L., Wu, C., Wang, Z., Zhao, L., Li, Z., Sun, C., and Sun, T., 2015, Density functional theory (DFT) and natural bond orbital (NBO) study of vibrational spectra and intramolecular hydrogen bond interaction of l-ornithine–l-aspartate, Spectrochim. Acta, Part A, 136, 338–346.
[23] Abou-Yousef, H., Dacrory, S., Hasanin, M., Saber, E., and Kamel, S., 2021, Biocompatible hydrogel based on aldehyde-functionalized cellulose and chitosan for potential control drug release, Sustainable Chem. Pharm., 21, 100419.
[24] Awasthi, S., Gaur, J.K., Pandey, S.K., Bobji, M.S., and Srivastava, C., 2021, High-strength, strongly bonded nanocomposite hydrogels for cartilage repair, ACS Appl. Mater. Interfaces, 13 (21), 24505–24523.
[25] Rincón, D.A., Doerr, M., and Daza, M.C., 2021, Hydrogen bonds and n → π* interactions in the acetylation of propranolol catalyzed by Candida antarctica lipase B: A QTAIM study, ACS Omega, 6 (32), 20992–21004.
[26] Emamian, S., Lu, T., Kruse, H., and Emamian, H., 2019, Exploring nature and predicting strength of hydrogen bonds: A correlation analysis between atoms‐in‐molecules descriptors, binding energies, and energy components of symmetry‐adapted perturbation theory, J. Comput. Chem., 40 (32), 2868–2881.
[27] Shen, J., Wu, X., Yu, J., Yin, F., Hao, L., Lin, C., Zhu, L., Luo, C., Zhang, C., and Xu, F., 2021, Hydrogen bonding interactions between arsenious acid and dithiothreitol/dithioerythritol at different pH values: A computational study with an explicit solvent model, New J. Chem., 45 (43), 20181–20192.
[28] An, X., Kang, Y., and Li, G., 2019, The interaction between chitosan and tannic acid calculated based on the density functional theory, Chem. Phys., 520, 100–107.
[29] Cao, S., Wang, J., Ding, Y., Sun, M., and Ma, F., 2017, Visualization of weak interactions between quantum dot and graphene in hybrid materials, Sci. Rep., 7 (1), 417.
[30] Wang, J., Wang, C., Zhang, H., Liu, Y., and Shi, T., 2021, Mass spectral and theoretical investigations of the transient proton-bound dimers on the cleavage processes of the peptide GHK and its analogues, RSC Adv., 11 (7), 4077–4086.
[31] Thakur, T.S., and Singh, S.S., 2015, Studying the role of C=O···C=O, C=O···N–O, and N–O···N–O dipole–dipole interactions in the crystal packing of 4-nitrobenzoic acid and 3,3′-dinitrobenzophenone polymorphs: An experimental charge density study, Cryst. Growth Des., 15 (7) 3280–3292.
[32] Cisneros, G.A., Wikfeldt, K.T., Ojamäe, L., Lu, J., Xu, Y., Torabifard, H., Bartók, A.P., Csányi, G., Molinero, V., and Paesani, F., 2016, Modeling molecular interactions in water: From pairwise to many-body potential energy functions, Chem. Rev., 116 (13), 7501–7528.
[33] Lusiana, R.A., Sasongko, N.A., Sangkota, V.D.A., Prasetya, N.B.A., Siahaan, P., Kiswandono, A.A., and Othman, M.H.D., 2020, In-vitro study of polysulfone-polyethylene glycol/chitosan (PEG-PSf/CS) membranes for urea and creatinine permeation, J. Kim. Sains Apl., 23 (8), 283–289.
[34] Lima, F.C.D.A., Alvim, R.S., and Miranda, C.R., 2017, From single asphaltenes and resins to nanoaggregates: A computational study, Energy Fuels, 31 (11), 11743–11754.
[35] Verweel, H.J., and Macgillavry, C.H., 1938, Crystal structure of succinic acid, Nature, 142 (3586), 161–162.
[36] Siboro, S.A.P., Anugrah, D.S.B., Ramesh, K., Park, S.H., Kim, H.R., and Lim, K.T., 2021, Tunable porosity of covalently crosslinked alginate-based hydrogels and its significance in drug release behavior, Carbohydr. Polym., 260, 117779.
[37] Eivazzadeh-Keihan, R., Khalili, F., Khosropour, N., Aliabadi, H.A.M., Radinekiyan, F., Sukhtezari, S., Maleki, A., Madanchi, H., Hamblin, M.R., Mahdavi, M., Haramshahi, S.M.A., Shalan, A.E., and Lanceros-Méndez, S., 2021, Hybrid bionanocomposite containing magnesium hydroxide nanoparticles embedded in a carboxymethyl cellulose hydrogel plus silk fibroin as a scaffold for wound dressing applications, ACS Appl. Mater. Interfaces, 13 (29), 33840–33849.
[38] Zhang, Y.S., and Khademhosseini, A., 2017, Advances in engineering hydrogels, Science, 356 (6337), eaaf3627.
[39] Liu, C., Min, F., Liu, L., and Chen, J., 2019, Density functional theory study of water molecule adsorption on the α-quartz (001) surface with and without the presence of Na+, Mg2+, and Ca2+, ACS Omega, 4 (7), 12711–12718.
[40] Chen, M., Ko, H.Y., Remsing, R.C., Calegari Andrade, M.F., Santra, B., Sun, Z., Selloni, A., Car, R., Klein, M.L., Perdew, J.P., and Wu, X., 2017, Ab initio theory and modeling of water, Proc. Natl. Acad. Sci. U.S.A., 114 (41), 10846–10851.
[41] Rieloff, E., Tully, M.D., and Skepö, M., 2019, Assessing the intricate balance of intermolecular interactions upon self-association of intrinsically disordered proteins, J. Mol. Biol., 431 (3), 511–523.
[42] Uto, T., and Yui, T., 2018, DFT optimization of isolated molecular chain sheet models constituting native cellulose crystal structures, ACS Omega, 3 (7), 8050–8058.
[43] You, W., Liu, Y., Howe, J.D., and Sholl, D.S., 2018, Competitive binding of ethylene, water, and carbon monoxide in metal-organic framework materials with open Cu sites, J. Phys. Chem. C, 122 (16), 8960–8966.
[44] Gershoni-Poranne, R., Rahalkar, A.P., and Stanger, A., 2018, The predictive power of aromaticity: quantitative correlation between aromaticity and ionization potentials and HOMO–LUMO gaps in oligomers of benzene, pyrrole, furan, and thiophene, Phys. Chem. Chem. Phys., 20 (21), 14808–14817.
[45] Li, H., Zhu, W., Zhu, S., Xia, J., Chang, Y., Jiang, W., Zhang, M., Zhou, Y., and Li, H., 2016, The selectivity for sulfur removal from oils: An insight from conceptual density functional theory, AIChE J., 62 (6), 2087–2100.
[46] Subramanian, B., Rameshbabu, A.P., Ghosh, K., Jha, P.K., Jha, R., Murugesan, S., Chattopadhyay, S., Dhara, S., Mondal, K.C., Basak, P., and Guha, S.K., 2019, Impact of styrene maleic anhydride (SMA) based hydrogel on rat fallopian tube as contraceptive implant with selective antimicrobial property, Mater. Sci. Eng., C, 94, 94–107.
[47] Ngo, T.M.P., Dang, T.M.Q., Tran, T.X., and Rachtanapun, P., 2018, Effects of zinc oxide nanoparticles on the properties of pectin/alginate edible films, Int. J. Polym. Sci., 2018, 5645797.
[48] Ghosh, S., Chopra, P., and Wategaonkar, S., 2020, C–H⋯S Interaction exhibits all the characteristics of conventional hydrogen bonds, Phys. Chem. Chem. Phys., 22 (31), 17482–17493.
[49] Yamada, Y., Goto, Y., Fukuda, Y., Ohba, H., and Nibu, Y., 2020, Excited-state dynamics affected by switching of a hydrogen-bond network in hydrated aminopyrazine clusters, J. Phys. Chem. A, 124 (48), 9963–9972.
[50] Lütteke, T., and Martin, F., 2015, Glycoinformatics, Humana Press, New Jersey, US.
[51] Li, Z.J., Srebnik, S., and Rojas, O.J., 2021, Revisiting cation complexation and hydrogen bonding of single-chain polyguluronate alginate, Biomacromolecules, 22 (9), 4027–4036.
[52] Li, J., and Mooney, D.J., 2016, Designing hydrogels for controlled drug delivery, Nat. Rev. Mater., 1 (12), 16071.
[53] Wang, B., Jiang, W., Dai, X., Gao, Y., Wang, Z., and Zhang, R.Q., 2016, Molecular orbital analysis of the hydrogen bonded water dimer, Sci. Rep., 6 (1), 22099.
[54] Akman, F., Issaoui, N., and Kazachenko, A.S., 2020, Intermolecular hydrogen bond interactions in the thiourea/water complexes (Thio-(H2O)n) (n = 1, ···, 5): X-ray, DFT, NBO, AIM, and RDG analyses, J. Mol. Model., 26 (6), 161.
[55] Tang, C., Ye, S., and Liu, H., 2007, Electrospinning of poly(styrene-co-maleic anhydride) (SMA) and water-swelling behavior of crosslinked/hydrolyzed SMA hydrogel nanofibers, Polymer, 48 (15) 4482–4491.
DOI: https://doi.org/10.22146/ijc.67961
Article Metrics
Abstract views : 5922 | views : 2380 | views : 1187Copyright (c) 2021 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.