Sequential Microwave-Ultrasound Assisted Extraction of Flavonoid from Moringa oleifera: Product Characteristic, Antioxidant and Antibacterial Activity

https://doi.org/10.22146/ijc.65252

Aji Prasetyaningrum(1), Bakti Jos(2), Ratnawati Ratnawati(3), Nur Rokhati(4), Teguh Riyanto(5), Gian Restu Prinanda(6*)

(1) Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Jl. Prof. H. Soedarto SH, Tembalang, Semarang 50275, Indonesia
(2) Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Jl. Prof. H. Soedarto SH, Tembalang, Semarang 50275, Indonesia
(3) Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Jl. Prof. H. Soedarto SH, Tembalang, Semarang 50275, Indonesia
(4) Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Jl. Prof. H. Soedarto SH, Tembalang, Semarang 50275, Indonesia
(5) Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Jl. Prof. H. Soedarto SH, Tembalang, Semarang 50275, Indonesia
(6) Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Jl. Prof. H. Soedarto SH, Tembalang, Semarang 50275, Indonesia
(*) Corresponding Author

Abstract


Moringa oleifera leaves contain secondary metabolites in flavonoid compounds known to prevent several diseases. Therefore, appropriate extraction methods are required to produce extracts with a high yield of flavonoids from Moringa. In this study, the extraction from Moringa leaves was carried out using the sequential microwave/ultrasound-assisted extraction (MUAE) method compared with sequential ultrasound/microwave (UMAE), microwave (MAE), ultrasound (UAE), and maceration (ME). The effects of the time, temperature, and percentage of ethanol were studied on total flavonoid content using AlCl3 colorimetric assay. The extracts were analyzed by Scanning Electron Microscopy (SEM), Fourier Transforms Infrared Spectrophotometry (FTIR), and High-Performance Liquid Chromatography (HPLC). The antioxidant and antibacterial activities were tested using DPPH-scavenging and disc diffusion methods. The results of SEM surface analysis on various extraction methods show differences on each surface. The FTIR spectrum showed the presence of flavonoid O–H at 3200 cm–1, C=O at 1621 cm–1, and C–O at 1019 cm–1. In the results of HPLC, MUAE extracts 16.70 mg/ 100 g flavonoid quercetin at the retention time of 4.5 min, with the highest total flavonoids (2.89 mg QE/g), the highest antioxidant activity (IC50 72.31 µg/mL), and highest antibacterial activity (S. aureus 7 mm, E. coli 2 mm).

Keywords


Moringa oleifera; quercetin; microwave; ultrasound; antioxidant

Full Text:

Full Text PDF


References

[1] Benarima, A., Laouini, S.E., Seghir, B.B., Belaiche, Y., and Ouahrani, M.R., 2020, Optimization of ultrasonic-assisted extraction of phenolic compounds from Moringa oleifera leaves using response surface methodology, Asian J. Res. Chem., 13 (5), 307–311.

[2] Vongsak, B., Sithisarn, P., Mangmool, S., Thongpraditchote, S., Wongkrajang, Y., and Gritsanapan W., 2013, Maximizing total phenolics, total flavonoids contents and antioxidant activity of Moringa oleifera leaf extract by the appropriate extraction method, Ind. Crops Prod., 44, 566–571.

[3] Hilwatullisan, Zaman, M., Husaini, A., and Chodijah, S., 2020, Diversification of biscuit product using Moringa oleifera flour as an additional source of nutrition, J. Phys.: Conf. Ser., 1500, 012047.

[4] Kamarudin, A.A., Saad, N., Sayuti, N.H., Razak, N.A.A., and Esa, N.M., 2020, Enhancement of phenolics and antioxidant activity via heat assisted extraction from Moringa oleifera using response surface methodology and its potential bioactive constituents, Malays. J. Med. Health Sci., 16 (2), 83–90.

[5] Pollini, L., Tringaniello, C., Ianni, F., Blasi, F., Manes, J., and Cossignani, L., 2020, Impact of ultrasound extraction parameters on the antioxidant properties of Moringa oleifera leaves, Antioxidants, 9 (4), 277.

[6] Rocchetti, G., Blasi, F., Montesano, D., Ghisoni, S., Marcotullio, M.C., Sabatini, S., Cossignani, L., and Lucini, L., 2019, Impact of conventional/non-conventional extraction methods on the untargeted phenolic profile of Moringa oleifera leaves, Food Res. Int., 115, 319–327.

[7] Rodríguez-Pérez, C., Gilbert-López, B., Mendiola, J.A., Quirantes-Piné, R., Segura-Carretero, A., and Ibáñez, E., 2016, Optimization of microwave-assisted extraction and pressurized liquid extraction of phenolic compounds from Moringa oleifera leaves by multiresponse surface methodology, Electrophoresis, 37 (13), 1938–1946.

[8] Sin, K., Baraoidan, W.A., and Gaspillo, P.D., 2014, Microwave-assisted extraction of phenolic compounds from Moringa oleifera Lam. leaves using response surface methodology as optimization tool, Philipp. Agric. Sci., 97 (1), 36–42.

[9] Izza, N., Dewi, S.R., Setyanda, A., Sukoyo, A., Utoro, P., Al Riza, D.F., and Wibisono, Y., 2018, Microwave-assisted extraction of phenolic compounds from Moringa oleifera seed as antibiofouling agents in membrane processes, MATEC Web Conf., 204, 03003.

[10] Yu, J., Lou, Q., Zheng, X., Cui, Z., and Fu, J., 2017, Sequential combination of microwave- and ultrasound-assisted extraction of total flavonoids from Osmanthus fragrans Lour. flowers, Molecules, 22 (12), 2216.

[11] Keshavarz, B., and Rezaei, K., 2020, Microwave- and ultrasound-assisted extraction of phenolic and flavonoid compounds from konar (Ziziphus spina-christi) fruits, Int. Food Res. J., 27 (1), 47–55.

[12] Tanase, C., Domokos, E., Coșarcă, S., Miklos, A., Imre, S., Domokos, J., and Dehelean, C.A., 2018, Study of the ultrasound-assisted extraction of polyphenols from beech (Fagus sylvatica L.) bark, BioResources, 13 (2), 2247–2267.

[13] Kothari, V., Gupta, A., and Naraniwal, M., 2012, Comparative study of various methods for extraction of antioxidant and antibacterial compounds from plant seeds, J. Nat. Rem., 12 (2), 162–173.

[14] Fithri, N.A., Fitrya, Shabrina, T., Akbari, A., and Yulanri. D., 2019, Antioxidant activity analysis and standardization of Parkia speciosa (petai) pods ethanol extract, Sci. Tech. Indones., 4 (1), 5–10.

[15] Wang, T., Li, W., and Li, T.X., 2017, Microwave-ultrasonic synergistic extraction of crude se-polysaccharides from Se-enriched tea, Key Eng. Mater., 737, 360–366.

[16] Wu, D., Gao, T., Yang, H., Du, Y., Li, C., Wei, L., Zhou, T., Lu, J., and Bi, H., 2015, Simultaneous microwave/ultrasonic-assisted enzymatic extraction of antioxidant ingredients from Nitraria tangutorun Bobr. juice by-products, Ind. Crops Prod., 66, 229–238.

[17] Nour, A.H., Oluwaseun, A.R., Nour, A.H., Omer, M.S., and Ahmed, N., 2021, “Microwave-Assisted Extraction of Bioactive Compounds (Review) in Microwave Heating, IntechOpen, London, UK, 1–31.

[18] Vinatoru, M., Mason, T.J., and Calinescu, I., 2017, Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials, TrAC, Trends Anal. Chem., 97, 159–178.

[19] Liew, S.Q., Ngoh, G.C., Yusoff, R., and Teoh, W.H., 2016, Sequential ultrasound-microwave assisted acid extraction (UMAE) of pectin from pomelo peels, Int. J. Biol. Macromol., 93, 426–435.

[20] Pongmalai, P., Devahastin, S., Chiewchan, N., and Soponronnarit, S., 2015, Enhancement of microwave-assisted extraction of bioactive compounds from cabbage outer leaves via the application of ultrasonic pre-treatment, Sep. Purif. Technol., 144, 37–45.

[21] Liang, Q., Chen, H., Zhou, X., Deng, Q., Hu, E., Zhao, C., and Gong, X., 2017, Optimized microwave-assistant extraction combined ultrasonic pre-treatment of flavonoids from Periploca forrestii Schltr. and evaluation of its anti-allergic activity, Electrophoresis, 38 (8), 1113–1121.

[22] Mahdi, A.A., Rashed, M.M.A., Al‑Ansi, W., Ahmed, M.I., Obadi, M., Jiang, Q., Raza, H., and Wang, H., 2019, Enhancing bio-recovery of bioactive compounds extracted from Citrus medica L. Var. sarcodactylis: Optimization performance of integrated of pulsed-ultrasonic/microwave technique, J. Food Meas. Charact., 13 (3), 1661–1673.

[23] Al Jitan, S., Alkhoori, S.A., and Yousef, L.F., 2018, Phenolic acids from plants: Extraction and application to human health, Stud. Nat. Prod. Chem., 58, 389–417.

[24] Mukhriani, Sugiarna, R., Farhan, N., Rusdi, M., and Arsul, M.I., 2019, Kadar fenolik dan flavonoid total ekstrak etanol daun anggur (Vitis vinifera L), ad-Dawaa' J. Pharm. Sci., 2 (2), 95–102.

[25] Tristantini, D., Ismawati, A., Pradana, B.T., and Jonathan, J.G., 2016, Pengujian aktivitas antioksidan menggunakan metode DPPH pada daun tanjung (Mimusops elengi L.), Prosiding Seminar Nasional Teknik Kimia “Kejuangan”, UPN Veteran Yogyakarta, 17 March 2016, G1, 1–7.

[26] Marjoni, M.R., and Zulfisa, A., 2017, Antioxidant activity of methanol extract/fractions of senggani leaves (Melastoma candidum D. Don), Pharm. Anal. Acta, 8 (8), 1000557.

[27] Jahromi, S.G., 2019, “Extraction Techniques of Phenolic Compounds from Plants” in Plant Physiological Aspects of Phenolic Compounds, IntechOpen, London, UK, 1–18.

[28] Thirugnanasambandham, K., 2017, Ultrasound-assisted extraction of oil from Moringa oleifera Lam. seed using various solvents, Energy Sources, Part A, 40 (3), 343-350.

[29] Catauro, M., Papale, F., Bollino, F., Piccolella, S., Marciano, S., Nocera, P., and Pacifico, S., 2015, Silica/quercetin sol–gel hybrids as antioxidant dental implant materials, Sci. Technol. Adv. Mater., 16 (3), 035001.

[30] Um, M., Han, T.H., and Lee, J.W., 2018, Ultrasound-assisted extraction and antioxidant activity of phenolic and flavonoid compounds and ascorbic acid from rugosa rose (Rosa rugosa Thunb.) fruit, Food Sci. Biotechnol., 27 (2), 375–382.

[31] Pimentel-Moral, S., Borrás-Linares, I., Lozano-Sánchez, J., Arráez-Román, D., Martínez-Férez, A., and Segura-Carretero, A., 2018, Microwave-assisted extraction for Hibiscus sabdariffa bioactive compounds, J. Pharm. Biomed. Anal., 156, 313–322.

[32] Chaves, J.O., de Souza, M.C., da Silva, L.C., Lachos-Perez, D., Torres-Mayanga, P.C., da Fonseca Machado, A.P., Forster-Carneiro, T., Vázquez-Espinosa, M., González-de-Peredo, A.V., Barbero, G.F., and Rostagno, M.A., 2020, Extraction of flavonoids from natural sources using modern techniques, Front. Chem., 8, 507887.

[33] Akhtar, I., Javad, S., Yousaf, Z., Iqbal, S., and Jabeen, K., 2019, Review: Microwave assisted extraction of phytochemicals an efficient and modern approach for botanicals and pharmaceuticals, Pak. J. Pharm. Sci., 32 (1), 223–230.

[34] Sasongko, A., Nugroho, R.W., Setiawan, C.E., Utami, I.W., and Pusfitasari, M.D., 2018, Aplikasi metode non konvensional pada ekstraksi bawang Dayak, JTT, 6 (1), 8–13.

[35] Bagherian, H., Ashtiani, F.Z., Fouladitajar, A., and Mohtashamy, M., 2011, Comparisons between conventional, microwave- and ultrasound-assisted methods for extraction of pectin from grapefruit, Chem. Eng. Process., 50 (11-12), 1237–1243.

[36] Narsih, and Agato, 2018, Efek kombinasi suhu dan waktu ekstraksi terhadap komponen senyawa ekstrak kulit lidah buaya, JGT, 7 (1), 75–87.

[37] Fombang, E.N., Nobossé, P., Mbofung, C.M.F., and Singh, D., 2020, Optimising extraction of antioxidants from roasted Moringa oleifera Lam. leaves using response surface methodology, J. Food Process. Preserv., 44 (6), e14482.

[38] Efthymiopoulos, I., Hellier, P., Ladommatos, N., Russo-Profili, A., Eveleigh, A., Aliev, A., Kay, A., and Mills-Lamptey, B., 2018, Influence of solvent selection and extraction temperature on yield and composition of lipids extracted from spent coffee grounds, Ind. Crops Prod., 119, 49–56.

[39] Cvitković, D., Lisica, P., Zorić, Z., Repajić, M., Pedisić, S., Dragović-Uzelac, V., and Balbino, S., 2021, Composition and antioxidant properties of pigments of Mediterranean herbs and spices as affected by different extraction methods, Foods, 10 (10), 2477.

[40] Sukmawati, Widiastuti, H., and Miftahuljanna, 2019, Analisis kadar kuersetin pada ekstrak etanol daun miana (Plectranthus Scutellarioides (L.) R.Br.) secara HPLC (High Performance Liquid Chromatography), As-Syifaa Jurnal Farmasi, 11 (1), 38–44.

[41] Shervington, L.A., Li, B.S., Shervington, A.A., Alpan, N., Patei, R., Muttakin, U., and Mulla. E., 2018, A comparative HPLC analysis of myricetin, quercetin and kaempferol flavonoids isolated from Gambian and Indian Moringa oleifera leaves, Int. J. Chem., 10, 28–35.

[42] González-Burgos, E., Ureña-Vacas, I., Sánchez, M., and Gómez-Serranillos, M.P., 2021, Nutritional value of Moringa oleifera lam. leaf powder extracts and their neuroprotective effects via antioxidative and mitochondrial regulation, Nutrients, 13 (7), 2203.

[43] Julianawati, T., Hendarto, H., and Widjiati, 2020, Penetapan total flavonoid, aktivitas antioksidan dan karakterisasi nanopartikel ekstrak etanol daun kelor (Moringa pterygosperma Gaertn.), Jurnal Penelitian Kesehatan Suara Forikes, 11 (1), 49–54.

[44] Sari, R., Muhani, M., and Fajriaty, I., 2017, Uji aktivitas antibakteri ekstrak etanol daun gaharu (Aquilaria microcarpa Baill.) terhadap bakteri Staphylococcus aureus dan Proteus mirabilis, PSR, 4 (3), 143–154.



DOI: https://doi.org/10.22146/ijc.65252

Article Metrics

Abstract views : 6165 | views : 4329


Copyright (c) 2022 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.