The Origin, Physicochemical Properties, and Removal Technology of Metallic Porphyrins from Crude Oils

Jumina Jumina(1*), Yehezkiel Steven Kurniawan(2), Dwi Siswanta(3), Bambang Purwono(4), Abdul Karim Zulkarnain(5), Agustinus Winarno(6), Joko Waluyo(7), Johan Syafri Mahathir Ahmad(8)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia Ma Chung Research Center for Photosynthetic Pigments, Universitas Ma Chung, Malang 65151, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(5) Department of Pharmaceutical Technology, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(6) Department of Mechanical Engineering, Vocational College, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(7) Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika No. 2 UGM Campus, Yogyakarta 55281, Indonesia
(8) Department of Civil and Environmental Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika No. 2 UGM Campus, Yogyakarta 55281, Indonesia
(*) Corresponding Author


Crude oil is an indispensable energy feedstock for daily activities, although some amounts of metallic porphyrins components with undesired characteristics have been identified. These constituents are assumed to originate from the geochemical process of chlorophyll and heme derivatives. In addition, their chemical structures have been thoroughly characterized using spectroscopy techniques, while several analytical methods were adopted in the detection and concentration quantification in the crude oils. The metallic porphyrins have several demerits, including the deactivation of used catalysts, contamination of the treated petrochemical products, and corrosion of the industrial equipment. Also, the removal process is considered challenging due to the strong interaction with the asphaltene fraction of crude oil. This review article, therefore, provides brief information on the origin, physicochemical properties, and possible removal technology of metallic porphyrins from crude oil samples. Besides, a better understanding of chemistry contributes a useful insight towards the development and establishment of better futuristic processing technology.


crude oil; metallic porphyrin; origin; property; removal

Full Text:

Full Text PDF


[1] Wahyuningsih, T.D., and Kurniawan, Y.S., 2017, Green synthesis of some novel dioxolane compounds from Indonesian essential oils as potential biogrease, AIP Conf. Proc., 1823, 020081.

[2] Jumina, Yasodhara, Y., Triono, S., Kurniawan, Y.S., Priastomo, Y., Chawla, H.M., and Kumar, N., 2020, Preparation and evaluation of a-cellulose based new heterogeneous catalyst for production of biodiesel, J. Appl. Polym. Sci., 138 (2), 49658.

[3] Lang, K., and Auer, B.R., 2020, The economic and financial properties of crude oil: A review, North Am. J. Econ. Finance, 52, 100914.

[4] Wahyuningsih, T.D., and Kurniawan, Y.S., 2020, Synthesis of dioxo-dioxane and dioxo-dioxepane ethyl oleate derivatives as bio-lubricant base stocks, Indones. J. Chem., 20 (3), 503–509.

[5] Ederington, L.H., Fernando, C.S., Hoelscher, S.A., Lee, T.K., and Linn, S.C., 2019, A review of the evidence on the relation between crude oil prices and petroleum product prices, J. Commod. Mark., 13, 1–15.

[6] Furimsky, E., 2016, On exclusivity of vanadium and nickel porphyrins in crude oil, Energy Fuels, 30 (11), 9978–9980.

[7] Munoz, G., Gunessee, B.K., Bégué, D., Bouyssiere, B., Baraille, I., Vallverdu, G., and Silva, H.S., 2019, Redox activity of nickel and vanadium porphyrins: A possible mechanism behind petroleum genesis and maturation?, RSV Adv., 9 (17), 9509–9516.

[8] Corma, A., Corresa, E., Mathieu, Y., Sauvanaud, L., Al-Bogami, S., Al-Ghrami, M.S., and Bourane, A., 2017, Crude oil to chemicals: Light olefins from crude oil, Catal. Sci. Technol., 7 (1), 12–46.

[9] Garcia-Montoto, V.G., Verdier, S., Maroun, Z., Egeberg, R., Tiedje, J.L., Sandersen, S., Zeuthen, P., and Bouyssiere, B., 2020, Understanding the removal of V, Ni and S in crude oil atmospheric residue hydrodemetallization and hydrodesulfurization, Fuel Process. Technol., 201, 106341.

[10] Liu, T., Lu, J., Zhao, X., Zhou, Y., Wei, Q., Xu, C., Zhang, Y., Ding, S., Zhang, T., Tao, X., Ju, L., and Shi, Q., 2015, Distribution of vanadium compounds in petroleum vacuum residuum and their transformations in hydrodemetallization, Energy Fuels, 29 (4), 2089–2096.

[11] Argyle, M.D., and Bartholomew, C.H., 2015, Heterogeneous catalyst deactivation and regeneration: A review, Catalysts, 5 (1), 145–269.

[12] Jenifer, A.C., Sharon, P., Prakash, A., and Sande, P.C., 2015, A review of the unconventional methods used for the demetallization of petroleum fractions over the past decade, Energy Fuels, 29 (12), 7743–7752.

[13] Treibs, A., 1934, Chlorophyll and haemin derivatives in bituminous rock, petroleum, mineral waxes and asphalts, Justus Liebigs Ann. Chem., 510 (1), 42–62.

[14] Treibs, A., 1936, Chlorophyll and hemin derivatives in organic materials, Angew. Chem., 49 (38), 682–686.

[15] Castillo, J., and Vargas, V., 2016, Metal porphyrin occlusion: Adsorption during asphaltene aggregation, Pet. Sci. Technol., 34 (10) 873–879.

[16] Espinosa, M., Pacheco, U.S., Leyte, F., and Ocampo, R., 2014, Separation and identification of porphyrin biomarkers from a heavy crude oil Zaap-1 offshore well, Sonda de Campeche, Mexico, J. Porphyrins Phthalocyanines, 18 (7), 542–551.

[17] Silva, H.S., Alfarra, A., Vallverdu, G., Bégué, D., Bouyssiere, B., and Baraille, I., 2019, Asphaltene aggregation studied by molecular dynamic simulations: Role of the molecular architecture and solvents on the supramolecular or colloidal behavior, Pet. Sci., 16 (3), 669–684.

[18] Tynan, E.C., and Yen, T.F., 1969, Association of vanadium chelates in petroleum asphaltenes as studied by ESR, Fuel, 43, 191–208.

[19] Liu, H., Mu, J., Wang, Z., Ji, S., Shi, Q., Guo, A., Chen, K., and Lu, J., 2015, Characterization of vanadyl and nickel porphyrins enriched from heavy residues by positive-ion electrospray ionization FT-ICR mass spectrometry, Energy Fuels, 29 (8), 4803–4813.

[20] Glebovskaya, E., and Volkenshtein, M., 1948, Spectra of porphyrins in petroleums and bitumens, J. Gen. Chem., 18, 1440.

[21] Skinner, D.A., 1952, Chemical state of vanadium in Santa Maria Valley crude oil, Ind. Eng. Chem., 44 (5), 1159–1165.

[22] Qian, K., Fredriksen, T.R., Mennito, A.S., Zhang, Y., Harper, M.R., Merchant, S., Kushnerick, J.D., Rytting, B.M., and Kilpatrick, P.K., 2019, Evidence of naturally-occurring vanadyl porphyrins containing multiple S and O atoms, Fuel, 239, 1258–1264.

[23] Berezin, B.D.J., 1999, Mutual atomic effect in porphyrin molecules and its manifestation in their structure and electronic absorption spectra, J. Appl. Spectrosc., 66 (4), 521–527.

[24] Foster, N.S., Day, J.W., Filby, R.H., Alford, A., and Rogers, D., 2002, The role of Na-montmorillonite in the evolution of copper, nickel, and vanadyl geoporphyrins during diagenesis, Org. Geochem., 33 (8), 907–919.

[25] Cantú, R., Stencel, J.R., Czernuszewicz, R.S., Jaffé, P.R., and Lash, T.D., 2000, Surfactant-enhanced partitioning of nickel and vanadyl deoxophylloerythroetioporphyrins from crude oil into water and their analysis using surface-enhanced resonance Raman spectroscopy, Environ. Sci. Technol., 34, 192–198.

[26] Sugiyama, I., and Williams-Jones, A.E., 2018, An approach to determining nickel, vanadium and other metal concentrations in crude oil, Anal. Chim. Acta, 1002, 18–25.

[27] Yakubov, M.R., Milordov, D.V., Yakubova, S.G., Borisov, D.N., Gryaznov, P.I., and Usmanova, G.S., 2015, Sulfuric acid assisted extraction and fractionation of porphyrins from heavy petroleum residuals with a high content of vanadium and nickel, Pet. Sci. Technol., 33 (9), 992–998.

[28] Banda-Cruz, E.E., Padrón-Ortega, S.I., Gallardo-Rivas, N.V., Rivera-Armenta, J.L., Páramo-García, U., Zavala, N.P.D., and Mendoza-Martinez, A.M., 2016, Crude oil UV spectroscopy and light scattering characterization, Pet. Sci. Technol., 34 (8), 732–738.

[29] Zhang, Y., Schulz, F., Rytting, B.M., Walters, C.C., Kaiser, K., Metz, J.N., Harper, M.R., Merchant, S.S., Mennito, A.S., Qian, K., Kushnerick, J.D., Kilpatrick, P.K., and Gross, L., 2019, Elucidating the geometric substitution of petroporphyrins by spectroscopic analysis and atomic force microscopy molecular imaging, Energy Fuels, 33 (7), 6088–6097.

[30] Gao, Y.Y., Shen, B.X., and Liu, J.C., 2012, The structure identification of vanadium porphyrins in Venezuela crude oil, Energy Sources, Part A, 34 (24), 2260–2267.

[31] Milordov, D.V., Usmanova, G.S., Yakubov, M.R., Yakubova, S.G., and Romanov, G.V, 2013, Comparative analysis of extractive methods of porphyrin separation from heavy oil asphaltenes, Chem. Technol. Fuels Oils, 49 (3), 232–238.

[32] Munawar, Aditiawati, P., and Astuti, D.I., 2012, Sequential isolation of saturated, aromatic, resinic, and asphaltic fractions degrading bacteria from oil contaminated soil in South Sumatera, Makara J. Sci., 16 (1), 58–64.

[33] Ashoori, S., Sharifi, M., Masoumi, M., and Salehi, M.M., 2017, The relationship between SARA fractions and crude oil stability, Egypt. J. Pet., 26 (1), 209–213.

[34] Musin, L.I., Foss, L.E., Shabalin, K.V., Nagornova, O.A., Borisova, Y.Y., Borisov, D.N., and Yakubov, M.R., 2020, Simple methods for the separation of various subfractions from coal and petroleum asphaltenes, Energy Fuels, 34 (6), 6523–6543.

[35] Rakhmatullin, I., Efimov, S., Tyurin, V., Gafurov, M., Al-Muntaser, A., Varfolomeev, M., and Klochkov, V., 2020, Qualitative and quantitative analysis of heavy crude oil samples and their SARA fractions with 13C nuclear magnetic resonance, Processes, 8 (8), 995.

[36] Zheng, F., Shi, Q., Vallverdu, G.S., Giusti, P., and Bouyssiere, B., 2020, Fractionation and characterization of petroleum asphaltene: Focus on metalopetroleomis, Processes, 8 (11), 1504.

[37] Farmani, Z., and Schrader, W., 2019, A detailed look at the saturate fractions of different crude oils using direct analysis by ultrahigh resolution mass spectrometry (UHRMS), Energies, 12 (18), 3455.

[38] Kurniawan, Y.S., Priyangga, K.T.A., Krisbiantoro, P.A., and Imawan, A.C., 2021, Green chemistry influences in organic synthesis: A review, J. Multidiscip. Appl. Nat. Sci., 1, 1-12.

[39] Kumolo, S.T., Yulizar, Y., Haerudin, H., Kurniawaty, I., and Apriandanu, D.O.B., 2019, Identification of metal porphyrins in Duri crude oil, IOP Conf. Ser.: Mater. Sci. Eng., 496, 012038.

[40] Nikolaychuk, E., Veli, A., Stratiev, D., Shishkova, I., Burilkova, A., Tamahkyarova, E., Mitkova, M., and Yordanov, D., 2018, Physical vacuum distillation and high temperature simulated distillation of residual oils from different origin, Int. J. Oil, Gas Coal Technol., 17 (2), 208–221.

[41] Elayane, J., Bchitou, R., and Bouhaouss, A., 2017, Study of the thermal cracking during the vacuum distillation of atmospheric residue of crude oil, Sci. Stud. Cercet. Stiint.: Chim. Ing. Chim., Biotehnol., Ind. Aliment. (Univ. Bacau), 18 (1), 61–71.

[42] Zhao, X., Liu, Y., Xu, C., Yan, Y., Zhang, Y., Zhang, Q., Zhao, S., Chung, K., Gray, M.R., and Shi, Q., 2013, Separation and characterization of vanadyl porphyrins in Venezuela Orinoco heavy crude oil, Energy Fuels, 27 (6), 2874–2882.

[43] Maryutina, T.A., and Timerbaev, A.R., 2017, Metal speciation analysis of petroleum: Myth or reality?, Anal. Chim. Acta, 991, 1–8.

[44] Putman, J.C., Rowland, S.M., Corilo, Y.E., and McKenna, A.M., 2014, Chromatographic enrichment and subsequent separation of nickel and vanadyl porphyrins from natural seeps and molecular characterization by positive electrospray ionization FT-ICR mass spectrometry, Anal. Chem., 86 (21), 10708–10715.

[45] Mironov, N.A., Sinyashin, K.O., Abilova, G.R., Tazeeva, E.G., Milordov, D.V., Yakubova, S.G., Borisov, D.N., Gryaznov, P.I., Borisova, Y.Y., and Yakubov, M.R., 2017, Chromatographic isolation of vanadyl porphyrins from heavy oil resins, Russ. Chem. Bull., 66 (8), 1450–1455.

[46] Biktagirov, T.B., Gafurov, M.R., Volodin, M.A., Mamin, G.V., Rodionov, A.A., Izotov, V.V., Vakhin, A.V., Isakov, D.R., and Orlinskii, S.B., 2014, Electron paramagnetic resonance study of rotational mobility of vanadyl porphyrin complexes in crude oil asphaltenes: Probing the effect of thermal treatment of heavy oils, Energy Fuels, 28 (10), 6683–6687.

[47] Gafurov, M.R., Volodin, M.A., Rodionov, A.A., Sorokina, A.T., Dolomatov, M.Y., Petrov, A.V., Vakhin, A.V., Mamin, G.V., and Orlinskii, S.B., 2018, EPR study of spectra transformations of the intrinsic vanadyl-porphyrin complexes in heavy crude oils with temperature to probe the asphaltenes’ aggregation, J. Pet. Sci. Eng., 166, 363–368.

[48] Yakubov, M.R., Milordov, D.V., Yakubova, S.G., Borisov, D.N., Gryaznov, P.I., Mironov, N.A., Abilova, G.R., Borisova, Y.Y., and Tazeeva, E.G., 2016, Features of the composition of vanadyl porphyrins in the crude extract of asphaltenes of heavy oil with high vanadium content, Pet. Sci. Technol., 34 (2), 177–183.

[49] Salleh, N.F., Ishak, N., Ruslan, M.S.H., Mandal, P.C., and Yusup, S., 2018, Fundamental studies on extraction of vanadyl oxide tetraphenyl porphyrin (VO TPP) presence in heavy oil model using toluene assisted ionic liquids, IOP Conf. Ser.: Mater. Sci. Eng., 458, 012069.

[50] Tahoun, M., Gee, C.T., McCoy, V.E., Sander, P.M., and Muller, C.E., 2021, Chemistry porphyrins in fossil plants and animals, RSC Adv., 11 (13), 7552–7563.

[51] Xili, C., Minghuan, S., and Bengao, L., 2010, Effect and mechanism research of removing nickel and vanadium porphyrins from model oil by chemical agent, Pet. Process. Petrochem., 41 (9), 19–22.

[52] Mokhtari, B., and Pourabdollah, K., 2012, Extraction of vanadyl porphyrins in crude oil by inclusion dispersive liquid-liquid microextraction and nano-basket of calixarene, J. Inclusion Phenom. Macrocyclic Chem., 74 (1), 183–189.

[53] Kurniawan, Y.S., Sathuluri, R.R., Iwasaki, W., Morisada, S., Kawakita, H., Ohto, K., Miyazaki, M., and Jumina, 2018, Microfluidic reactor for Pb(II) ion extraction and removal with amide derivative of calix[4]arene supported by spectroscopic studies, Microchem. J., 142, 377–384.

[54] Sathuluri, R.R., Kurniawan, Y.S., Kim, J.Y., Maeki, M., Iwasaki, W., Morisada, S., Kawakita, H., Miyazaki, M., and Ohto, K., 2018, Droplet-based microreactor system for stepwise recovery of precious metal ions from real metal waste with calix[4]arene derivatives, Sep. Sci. Technol., 53 (8), 1261–1272.

[55] Kurniawan, Y.S., Sathuluri, R.R., Ohto, K., Iwasaki, W., Kawakita, H., Morisada, S., Miyazaki, M., and Jumina, 2019, A rapid and efficient lithium-ion recovery from seawater with tripropyl-monoacetic acid calix[4]arene derivative employing droplet-based microfluidic reactor system, Sep. Purif. Technol., 211, 925–934.

[56] Murphy, P., Dalgarno, S.J., and Paterson, M.J., 2016, Transition metal complexes of calix[4]arene: Theoretical investigations into small guest binding within the host cavity, J. Phys. Chem. A, 120 (5), 824–839.

[57] Kurniawan, Y.S., Ryu, M., Sathuluri, R.R., Iwasaki, W., Morisada, S., Kawakita, H., Ohto, K., Maeki, M., Miyazaki, M., and Jumina, 2019, Separation of Pb(II) ion with tetraacetic acid derivative of calix[4]arene by using droplet-based microreactor system, Indones. J. Chem., 19 (2), 368–375.

[58] Jumina, Priastomo, Y., Setiawan, H.R., Mutmainah, Kurniawan, Y.S., and Ohto, K., 2020, Simultaneous removal of lead(II), chromium(III), and copper(II) heavy metal ions through an adsorption process using C-phenylcalix[4]pyrogallolarene material, J. Environ. Chem. Eng., 8 (4), 103971.

[59] Shang, H., Liu, Y., Shi, J.C., Shi, Q., and Zhang, W.H., 2016, Microwave-assisted nickel and vanadium removal from crude oil, Fuel Process. Technol., 142, 250–257.

[60] Li, Y., Shang, H., Zhang, Q., Elabyouki, M., and Zhang, W., 2020, Theoretical study of the structure and properties of Ni/V porphyrins under microwave electric field: A DFT study, Fuel, 278, 118305.

[61] Mandal, P.C., Goto, M., and Sasaki, M., 2014, Removal of nickel and vanadium from heavy oils using supercritical water, J. Jpn. Pet. Inst., 57 (1), 18–28.

[62] Mandal, P.C., Wahyudiono, Sasaki, M., and Goto, M., 2012, Non-catalytic vanadium removal from vanadyl etioporphyrin (VO-EP) using a mixed solvent of supercritical water and toluene: A kinetic study, Fuel, 92 (1), 288–294.

[63] Gould, K.A., 1980, Oxidative demetallization of petroleum asphaltenes and residua, Fuel, 59 (10), 733–736.

[64] Salehizadeh, H., Mousavi, M., Hatamipour, S., and Kermanshahi, K., 2007, Microbial demetallization of crude oil using Aspergillus sp.: Vanadium oxide octaethyl porphyrin (VOOEP) as a model of metallic porphyrins, Iran. J. Biotechnol., 5 (4), 226–231.

[65] Dedeles, G.R., Abe, A., Saito, K., Asano, K., Saito, K., Yokota, A., and Tomita, F., 2000, Microbial demetallization of crude oil: Nickel protoporphyrin disodium as a model organo-metallic substrate, J. Biosci. Bioeng., 90 (5), 515–521.

[66] Ovalles, C., Rojas, I., Acevedo, S., Escobar, G., Jorge, G., Gutierrez, L.B., Rincon, A., and Scharifker, B., 1996, Upgrading of Orinoco Belt crude oil and its fractions by an electrochemical system in the presence of protonating agents, Fuel Process. Technol., 48 (2), 159–172.

[67] Sakanishi, K., Yamashita, N., Whitehurst, D.D., and Mochida, I., 1998, Depolymerization and demetallation treatments of asphaltene in vacuum residue, Catal. Today, 43 (3-4), 241–247.

[68] Reyes, D.J.K., de Montellano, A.G.S.O., Tzab, R.A.T., Oskam, G., and Gil, J.J.A., 2014, Effects of UV-Vis irradiation on vanadium etioporphyrins extracted from crude oil and the role of nanostructured titania, Int. J. Photoenergy, 2014, 401239.

[69] Nguyen, M.T., Nguyen, D.L.T., Xia, C., Nguyen, T.B., Shokouhimehr, M., Sana, S.S., Grace, A.N., Aghbashlo, M., Tabatabaei, M., Sonne, C., Kim, S.Y., Lam, S.S., and Le, Q.V., 2021, Recent advances in asphaltene transformation in heavy oil hydroprocessing: Progress, challenges, and future perspectives, Fuel Process. Technol., 213, 106681.

[70] Kohli, K., Prajapati, R., Maity, S.K., Sau, M., and Sharma, B.K., 2019, Deactivation of a hydrotreating catalyst during hydroprocessing of synthetic crude by metal bearing compounds, Fuel, 243, 579–589.

[71] Ongarbayev, Y., Oteuli, S., Tileuberdi, Y., Maldybaev, G., and Nurzhanova, S., 2019, Demetallization and desulfurization of heavy oil residues by adsorbents, Pet. Sci. Technol., 37 (9), 1045–1052.

[72] Magomedov, R.N., Popova, A.Z., Maryutina, T.A., Kadiev, K.M., and Khadzhiev, S.N., 2015, Current status and prospects of demetallization of heavy petroleum feedstock (Review), Pet. Chem., 55 (6), 423–443.

[73] Lee, D., Kim, K.D., and Lee, Y.K., 2020, Conversion of V-porphyrin in asphaltenes into V2S3 as an active catalyst for slurry phase hydrocracking of vacuum residue, Fuel, 263, 116620.

[74] Langeslay, R.R., Kaphan, D.M., Marshall, C.L., Stair, P.C., Sattelberger, A.P., and Delferro, M., 2019, Catalytic applications of vanadium: A mechanistic perspective, Chem. Rev., 119 (4), 2128–2191.


Article Metrics

Abstract views : 1456 | views : 735

Copyright (c) 2021 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Indonesian Journal of Chemistry (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Analytics View The Statistics of Indones. J. Chem.