Synthesis of Colloidal Silver Nanoparticles in Various Liquid Media Using Pulse Laser Ablation Method and Its Antibacterial Properties
Syifa Avicenna(1), Iis Nurhasanah(2), Ali Khumaeni(3*)
(1) Department of Physics, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Soedarto SH, Tembalang, Semarang 50275, Indonesia
(2) Department of Physics, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Soedarto SH, Tembalang, Semarang 50275, Indonesia
(3) Department of Physics, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Soedarto SH, Tembalang, Semarang 50275, Indonesia
(*) Corresponding Author
Abstract
The silver nanoparticles (AgNPs) have been applied as an antibacterial agent in consumer products, cosmetics, and food industries. In this present work, AgNPs were synthesized in various mediums of polyvinylpyrrolidone (PVP), polyethylene glycol (PEG), and chitosan using the pulse laser ablation synthesis method. Experimentally, a pulse Nd:YAG laser beam (1064 nm, 7 ns, 30 mJ) was directed using a silver mirror and focused using a quartz lens with a focal length of 30 mm on a silver metal plate placed in a petri dish containing liquid mediums for 120 min to produce colloidal silver nanoparticles. The results certified that All AgNPs have a spherical shape with polydisperse size in all media, including PVP, PEG, and chitosan. The smallest AgNPs have been produced in PVP medium with an averaged smallest size of 11.62 nm. Based on this result, PVP is the preferred medium to produce AgNPs with the smallest size and good stability. The produced silver nanoparticles have been successfully employed as an antibacterial agent, which is experimentally demonstrated by using Escherichia coli and Staphylococcus aureus. The result certified that the produced silver nanoparticles could effectively kill the bacteria with a killing percentage of 99.6 to 100%.
Keywords
Full Text:
Full Text PDFReferences
[1] Kruszewski, M., Brzoska, K., Brunborg, G., Asare, N., Dobrzyńska, M., Dušinská, M., Fjellsbø, L.M., Georgantzopoulou, A., Gromadzka-Ostrowska, J., Gutleb, A.C., Lankoff, A., Magdolenová, Z., Pran, E.R., Rinna, A., Instanes, C.J., Sandberg, W., Schwarze, P., Stȩpkowski, T., Wojewódzka, M., and Refsnes, M., 2011, Toxicity of silver nanomaterials in higher eukaryotes, Adv. Mol. Toxicol., 5, 179–218.
[2] Marassi, V., Di Cristo, L., Smith, S.G.J., Ortelli, S., Blosi, M., Costa, A.L., Reschiglian, P., Volkov, Y., and Prina-Mello, A, 2018, Silver nanoparticles as a medical device in healthcare settings: A five-step approach for candidate screening of coating agents, R. Soc. Open Sci., 5 (1), 171113.
[3] Jing, X., and Guo, Z., 2019, Multifunctional WS2&M-AgNPs superhydrophobic conductive sponges for application in various sensors, New J. Chem., 43 (4), 5287–5296.
[4] Natsuki, J., Natsuki, T., and Hashimoto, Y., 2015, A review of silver nanoparticles: Synthesis methods, properties and applications, Int. J. Mater. Sci. Appl., 4 (5), 325–332.
[5] Carbone, M., Donia, D.T., Sabbatella, G., and Antiochia, R., 2016, Silver nanoparticles in polymeric matrices for fresh food packaging, J. King Saud Univ. Sci., 28 (4), 273–279.
[6] Divya, M., Kiran, G.S., Hassan, S., and Selvin, J., 2019, Biogenic synthesis and effect of silver nanoparticles (AgNPs) to combat catheter-related urinity tract infections, Biocatal. Agric. Biotechnol., 18, 101037.
[7] Lkhagvajav, N., Yaşa, I., Çelik, E., Koizhaiganova, M., and Sari, Ö., 2011, Antimicrobial activity of colloidal silver nanoparticles prepared by sol-gel method, Dig. J. Nanomater. Biostruct., 6 (1), 149–154.
[8] Mishra, Y.K., Mohapatra, S., Kabiraj, D., Mohanta, B., Lalla, N.P., Pivin, J.C., and Avasthi, D.K., 2007, Synthesis and characterization of Ag nanoparticles in silica matrix by atom beam sputtering, Scr. Mater., 56 (7), 629–632.
[9] Valverde-Alva, M.A., García-Fernández, T., Villagrán-Muniz, M., Sánchez-Aké, C., Castañeda-Guzmán, R., Esparza-Alegría, E., Sánchez-Valdés, C.F., Sánchez Llamazares, J.L., and Herrera, C.E.M., 2015, Synthesis of silver nanoparticles by laser ablation in ethanol: A pulsed photoacoustic study, Appl. Surf. Sci., 355, 341–349.
[10] Bae, C.H., Nam, S.H., and Park, S.M., 2002, Formation of silver nanoparticles by laser ablation of a silver target in NaCl solution, Appl. Surf. Sci., 197-198, 628–634.
[11] Boutinguiza, M., Comesaña, R., Lusquiños, F., Riveiro, A., del Val, J., and Pou, J., 2015, Production of silver nanoparticles by laser ablation in open air, Appl. Surf. Sci., 336, 108–111.
[12] Darroudi, M., Ahmad, M.B., Zamiri, R., Abdullah, A.H., Ibrahim, N.A., Shameli, K., and Shahril Husin, M., 2011, Preparation and characterization of gelatin mediated silver nanoparticles by laser ablation, J. Alloys Compd., 509 (4), 1301–1304.
[13] Mafune, F., Kohno, J., Takeda, Y., and Kondow, T., 2000, Formation and size control of silver nanoparticles by laser ablation in aqueous solution, J. Phys. Chem. B, 104 (39), 9111–9117.
[14] Rhim, J.W., Wang, L.F., Lee, Y., and Hong, S.I., 2014, Preparation and characterization of bionanocomposite films of agar and silver nanoparticles: Laser ablation method, Carbohydr. Polym., 103, 456–465.
[15] Al-Azawi, M.A., Bidin, N., Bououdina, M., Abbas, K.N., Al-Asedy, H.J., Ahmed, O.H., and Thahe, A.A., 2016, The effects of the ambient liquid medium on the ablation efficiency, size and stability of silver nanoparticles prepared by pulse laser ablation in liquid technique, J. Teknol., 78 (3), 7–11.
[16] Song, X., Vossebein, L., and Zille, A., 2019, Efficacy of disinfectant-impregnated wipes used for surface disinfection in hospitals: A review, Antimicrob. Resist. Infect. Control, 8 (1), 139.
[17] Mulfinger, L., Solomon, S.D., Bahadory, M., Jeyarajasingam, A.V., Rutkowsky, S.A., and Boritz, C., 2007, Synthesis and study of silver nanoparticles, J. Chem. Educ., 84 (2), 322–325.
[18] Ahmed, B.S., Rao, A.G., Sankarshan, B.M., Vicas, C.S., Namratha, K., Umesh, T.K., Somashekar, R., and Byrappa, K., 2016, Evaluation of gold, silver, and silver-gold (bimetallic) nanoparticles as radiosensitizers for radiation therapy in cancer treatment, Cancer Oncol. Res., 4 (3), 42–51.
[19] Abadeer, N.S., and Murphy, C.J., 2016, Recent progress in cancer thermal therapy using gold nanoparticles, J. Phys. Chem. C, 120 (9), 4691–4716.
[20] Evanoff, D.D., and Chumanov, G., 2005, Synthesis and optical properties of silver nanoparticles and arrays, ChemPhysChem, 6 (7), 1221–1231.
[21] Rodríguez-León, E., Iñiguez-Palomares, R., Navarro, R.E., Herrera-Urbina, R., Tánori, J., Iñiguez-Palomares, C., and Maldonado, A., 2013, Synthesis of silver nanoparticles using reducing agents obtained from natural sources (Rumex hymenosepalus extracts), Nanoscale Res. Lett., 8 (1), 318.
[22] Nuraeni, W., Daruwati, I., Widyasari, E.M., and Sriyani, M.E., 2013, Verifikasi kinerja alat particle size analyzer (PSA) HORIBA LB-550 untuk penentuan distribusi ukuran nanopartikel, Prosiding Seminar Nasional Sains dan Teknologi Nuklir, PTNBR-BATAN, Bandung, 4 July 2013, 266–271.
[23] Lichtenegger, T., and Pirker, S., 2018, CFD-DEM modeling of strongly polydisperse particulate systems, Powder Technol., 325, 698–711.
[24] Kim, M., Osone, S., Kim, T., Higashi, H., and Seto, T., 2017, Synthesis of nanoparticles by laser ablation: A review, KONA Powder Part. J., 34, 80–90.
[25] Tejamaya, M., Merrifield, R.C., and Lead, J.R., 2012, Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media, Environ. Sci. Technol., 46 (13), 7011–7017.
[26] Tiyaboonchai, W., 2003, Chitosan nanoparticles: A promising system for drug delivery, Naresuan Univ. J., 11 (3), 51–66.
[27] Beyene, H.D., Werkneh, A.A., Bezabh, H.K., and Ambaye, T.G., 2017, Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review, Sustainable Mater. Technol., 13, 18–23.
[28] Chhatre, A., Solasa, P., Sakle, S., Thaokar, R., and Mehra, A., 2012, Color and surface plasmon effects in nanoparticle systems: Case of silver nanoparticles prepared by microemulsion route, Colloids Surf., A, 404, 83–92.
[29] Hosseinpour-Mashkani, S.M., and Ramezani, M., 2014, Silver and silver oxide nanoparticles: Synthesis and characterization by thermal decomposition, Mater. Lett., 130, 259–262.
[30] Dakal, T.C., Kumar, A., Majumdar, R.S., and Yadav, V., 2016, Mechanistic basis of antimicrobial actions of silver nanoparticles, Front. Microbiol., 7, 1831.
DOI: https://doi.org/10.22146/ijc.60344
Article Metrics
Abstract views : 3874 | views : 2646Copyright (c) 2021 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.