Analysis and Characterization of Solid and Liquid Organic Fertilizer from Hydrothermal Carbonization (HTC) of Chicken Feather and Blood Waste

https://doi.org/10.22146/ijc.59353

Agus Kuncaka(1*), Rizky Ibnufaatih Arvianto(2), Almas Shafira Ramadhanty Bunga Latifa(3), Munawir Ramadhan Rambe(4), Adhitasari Suratman(5), Sugeng Triono(6)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(5) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(6) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(*) Corresponding Author

Abstract


Conversion of feather and blood from chicken slaughterhouse waste for producing solid and liquid organic fertilizer excluding composting process with a variation of the mass ratio of feather and blood of a chicken has been conducted. The nitrogen, sulfur, and iron content in the solid and liquid product of the hydrothermal carbonization process were analyzed to identify and characterize the possibility of hydrolysate as a source of nitrogen, sulfur, and iron in soil fertilizer. Feather and blood of chicken waste were introduced to a hydrothermal carbonization reactor with the addition of limestone at a temperature range of 160–170 °C for the preparation of solid and liquid organic fertilizer. According to the FTIR interpretation, the solid product had functional groups such as NH, OH, CH sp3, SH, C=O, C=C, C–O–C, and C–H aromatic. The nitrogen, sulfur, and iron content of the optimal ratio in the solid phase were 4.67%, 1.63%, and 3694.56 ppm, while their contents in the liquid fertilizer were 3.76%, 1.80%, and 221.56 ppm, respectively. The vibration of 478 cm–1 is attributed to Fe–O paramagnetic (Fe2O3) confirmed by TEM images showed the diameter size less than 20 nm indicating the presence of superparamagnetic material.

Keywords


hydrolysate; hydrothermal carbonization; feather; blood

Full Text:

Full Text PDF


References

[1] Tronina, P., and Bubel, F., 2008, Production of organic fertilizer from poultry wastes excluding the composting process, Pol. J. Chem. Technol., 10 (2), 33–36.

[2] Mazotto, A.M., Coelho, R.R.R., Cedrola, S.M.L., de Lima, M.F., Couri, S., de Souza, E.P., and Vermelho, A.B., 2011, Keratinase production by three Bacillus spp. using feather meal and whole feather as substrate in a submerged fermentation, Enzyme Res., 2011, 523780.

[3] Sams, A.R., 2000, Poultry Meat Processing, 1st Ed., Eds. Owens, C.M., Alvarado, C., and Sams, A.R., CRC Press, Boca Raton.

[4] Sari, Ö.F., Özdemir, S., and Celebi, A., 2016, Utilization and management of poultry slaughterhouse wastes with new methods, EurAsia Waste Management Symposium, 2-4 May 2016, İstanbul, Türkiye.

[5] Yaakob, M.A., Radin Mohamed, R.M.S., Al-Gheethi, A.A.S., and Mohd Kassim, A.H., 2018, Characteristics of chicken slaughterhouse wastewater, Chem. Eng. Trans., 63, 637–642.

[6] Wan, Y., Ghost, R., and Cui, Z., 2002, High resolution plasma protein fractionation using ultrafiltration, Desalination, 144 (1-3), 301–306.

[7] Kuncaka, A., 2014, Metode Memproduksi Pupuk Organik Paramagnetik Pelepasan Lambat, IND. Patent No. P00201401530.

[8] Hayes, M.H.B., Swift, R.S., Byrne, C.M., and Simpson, A.J., 2010, The isolation and characterization of humic substances and humin from Grey Brown Podzolic and Grey Grassland Soil, 19th World Congress of Soil Science, Soil Solution for Changing World, 1-6 August 2010, Brisbane, Australia.

[9] Adiati, U., Puastuti, W., and Mathius, I.W., 2004, Peluang pemanfaatan tepung bulu ayam sebagai bahan pakan ternak ruminansia, Wartazoa, 14, 39–44.

[10] Widhyari, S.D., Esfandiari, A., and Herlina, 2011, Profil protein total, albumin dan globulin pada ayam broiler yang diberi kunyit, bawang putih dan Zinc (Zn), JIPI, 16 (3), 179–184.

[11] Putriani, S., Soma, I.G., and Ardana, I.B.K., 2012, Nilai hematokrit, kadar hemoglobin, dan total eritrosit ayam pedaging yang diinjeksi kombinasi tylosin dengan gentamicin, Indones. Med. Veterinus, 1 (4), 492–504.

[12] Suwardi and Wijaya, H., 2013, Peningkatan produksi tanaman pangan dengan bahan aktif asam humat dengan zeolite sebagai pembawa, JIPI, 18 (2), 79-84.

[13] Gitosuwondo, S., 2010, Strategi efisiensi penggunaan bahan organik untuk kesuburan dan produktivitas tanah melalui pemberdayaan sumberdaya hayati tanah, Jurnal Sumber Daya Lahan, 4 (1), 13–25.

[14] Las, I., and Setyorini, D., 2010, Kondisi lahan, teknologi, arah, dan pengembangan pupuk majemuk NPK dan pupuk organik, Prosiding Semnas Peranan Pupuk NPK dan Organik dalam Meningkatkan Produksi dan Swasembada Beras Berkelanjutan, Balai Besar Litbang Sumberdaya Lahan Pertanian, 24 February 2010, Bogor, Indonesia.

[15] Sevilla, M., and Fuertes, A.B., 2009, The production of carbon materials by hydrothermal carbonization of cellulose, Carbon, 47 (9), 2281–2289.

[16] Nurdiawati, A., Nakhshiniev, B., Zaini, I.N., Saidov, N., Takahashi, F., and Yoshikawa, K., 2017, Characterization of potential liquid fertilizers obtained by hydrothermal treatment of chicken feathers, Environ. Prog. Sustainable Energy, 37 (1), 375–382.

[17] Gasco, G., Paz-Ferreiro, J., Álvarez, M.L., Saa, A., and Méndez, A., 2018, Biochars and hydrochars prepared by pyrolysis and hydrothermal carbonisation of pig manure, Waste Manage., 79, 395–403.

[18] Donar, Y.O., Çağlar, E., and Sınağ, A., 2016, Preparation and characterization of agricultural waste biomass based hydrochars, Fuel, 183, 366–372.

[19] Namanga, J., Foba, J., Ndinteh, D.T., Yufanyi, D.M., and Krause, R.W.M., 2013, Synthesis and magnetic properties of a superparamagnetic nanocomposite "Pectin-magnetite nanocomposite", J. Nanomater., 2013, 137275.

[20] Cahyadi, Yuliani, N., and Srikandi, 2013, Penetapan ambang batas kadar Fe total dalam pupuk organik yang berpotensi menyebabkan keracunan Fe tanaman padi sawah, Sains Natural, 3 (2), 135-143.

[21] Fattakhova, L.A., Shinkarev, A.A., Kosareva, L.R., Nurgaliev, D.K., Shinkarev Jr., A.A., and Bagautdinova, Y.S., 2016, Magnetic properties of different-aged chernozemic soil profiles, ARPN J. Eng. Appl. Sci., 19 (11), 11383–11394.

[22] Yunta, F., Di Foggia, M., Bellido-Dıáz, V., Morales-Calderoń, M., Tessarin, P., López-Rayo, S., Tinti, A., Kovács, K., Klencsár, Z., Fodor, F., and Rombola, A.D., 2013, Blood meal-based compound. Good choice as iron fertilizer for organic farming, J. Agric. Food Chem., 61 (17), 3995−4003.

[23] Kovács, K., Czech, V., Fodor, F., Solti, A., Lucena, J.J., Santos-Rosell, S., Hernández-Apaolaza, L., 2013, Characterization of Fe-leonardite complexes as novel natural iron fertilizers, J. Agric. Food Chem., 61 (50), 12200–12210.



DOI: https://doi.org/10.22146/ijc.59353

Article Metrics

Abstract views : 1732 | views : 2011


Copyright (c) 2021 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.