Synthesis and Characterization of 2,3-Diaminomaleonitrile Derivatives by One-Pot Schiff Base Reaction and Their Application in Dye Synthesized Solar Cells
Saifaldeen Muwafag Abdalhadi(1*), Asmaa Yahya Al-Baitai(2), Hazim Abdulrazzaq Al-Zubaidi(3)
(1) Department of Remote Sensing, College of Remote Sensing and Geophysics, Al-Karkh University of Science, Baghdad, Iraq
(2) Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq
(3) Department of Biomedical Science, College of Science, Al-Karkh University of Science, Baghdad, Iraq
(*) Corresponding Author
Abstract
Keywords
References
[1] Singh, G.K., 2013, Solar power generation by PV (photovoltaic) technology: A review, Energy, 53, 1–13.
[2] Gong, J., Sumathy, K., Qiao, Q., and Zhou, Z., 2017, Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends, Renewable Sustainable Energy Rev., 68, 234–246.
[3] Malinowski, M., Leon, J.I., and Abu-Rub, H., 2017, Solar photovoltaic and thermal energy systems: Current technology and future trends, Proc. IEEE, 105 (11), 2132–2146.
[4] Abdalhadi, S.M., Connell, A., Zhang, X., Wiles, A.A., Davies, M.L., Holliman, P.J., and Cooke, G., 2016, Convenient synthesis of EDOT-based dyes by CH-activation and their application as dyes in dye-sensitized solar cells, J. Mater. Chem. A, 4 (40), 15655–15661.
[5] Shalini, S., Balasundaraprabhu, R., Kumar, T.S., Prabavathy, N., Senthilarasu, S., and Prasanna, S., 2016, Status and outlook of sensitizers/dyes used in dye sensitized solar cells (DSSC): A review, Int. J. Energy Res., 40 (10), 1303–1320.
[6] Prabavathy, N., Shalini, S., Balasundaraprabhu, R., Velauthapillai, D., Prasanna, S., and Muthukumarasamy, N., 2017, Enhancement in the photostability of natural dyes for dye-sensitized solar cell (DSSC) applications: A review, Int. J. Energy Res., 41 (10), 1372–1396.
[7] Sugathan, V., John, E., and Sudhakar, K., 2015, Recent improvements in dye sensitized solar cells: A review, Renewable Sustainable Energy Rev., 52, 54–64.
[8] Ahmad, M.S., Pandey, A.K., and Abd Rahim, N., 2017, Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review, Renewable Sustainable Energy Rev., 77, 89–108.
[9] Mozaffari, S., Nateghi, M.R., and Zarandi, M.B., 2017, An overview of the Challenges in the commercialization of dye sensitized solar cells, Renewable Sustainable Energy Rev., 71, 675–86.
[10] Urbani, M., Grätzel, M., Nazeeruddin, M.K., and Torres, T., 2014, Meso-substituted porphyrins for dye-sensitized solar cells, Chem. Rev., 114 (24), 12330–12396.
[11] Obotowo, I.N., Obot, I.B., and Ekpe, U.J., 2016, Organic sensitizers for dye-sensitized solar cell (DSSC): Properties from computation, progress and future perspectives, J. Mol. Struct., 1122, 80–87.
[12] Carella, A., Borbone, F., and Centore, R., 2018, Research progress on photosensitizers for DSSC, Front. Chem., 6, 113–127.
[13] Ludin, N.A., Al-Alwani Mahmoud, A.M., Mohamad, A.B., Kadhum, A.A.H., Sopian, K., and Abdul Karim, N.S., 2014, Review on the development of natural dye photosensitizer for dye-sensitized solar cells, Renewable Sustainable Energy Rev., 31, 386–396.
[14] O'Regan, B., and Grätzel, M., 1991, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 353 (6346), 737–740.
[15] Nazeeruddin, M.K., Péchy, P., Renouard, T., Zakeeruddin, S.M., Humphry-Baker, R., Comte, P., Liska, P., Cevey, L., Costa, E., Shklover, V., Spiccia, L., Deacon, G.B., Bignozzi, C.A., and Grätzel, M., 2001, Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells, J. Am. Chem. Soc., 123 (8), 1613–1624.
[16] Kim, B.G., Zhen, C.G., Jeong, E.J., Kieffer, J., and Kim, J., 2012, Organic dye design tools for efficient photocurrent generation in dye-sensitized solar cells: Exciton binding energy and electron acceptors, Adv. Funct. Mater., 22 (8), 1606–1612.
[17] Choi, H., Baik, C., Kang, S.O., Ko, J., Kang, M.S., Nazeeruddin, M.K., and Grätzel, M., 2008, Highly efficient and thermally stable organic sensitizers for solvent-free dye-sensitized solar cells, Angew. Chem. Int. Ed., 47 (2), 327–330.
[18] Lin, R.Y.Y., Wu, F.L., Li, C.T., Chen, P.Y., Ho, K.C., and Lin, J.T., 2015, High-performance aqueous/organic dye-sensitized solar cells based on sensitizers containing triethylene oxide methyl ether, ChemSusChem, 8 (15), 2503–2513.
[19] Hara, K., Sato, T., Katoh, R., Furube, A., Ohga, Y., Shinpo, A., Suga, S., Sayama, K., Sugihara, H., and Arakawa, H., 2003, Molecular design of coumarin dyes for efficient dye-sensitized solar cells, J. Phys. Chem. B, 107 (2), 597–606.
[20] Jiao, Y., Zhang, F., Grätzel, M., and Meng, S., 2013, Structure-property relations in all-organic dye-sensitized solar cells, Adv. Funct. Mater., 23 (4), 424–429.
[21] Mishra, A., Fischer, M.K.R., and Bäuerle, P., 2009, Metal-free organic dyes for dye-sensitized solar cells: From structure: Property relationships to design rules, Angew. Chem. Int. Ed., 48 (14), 2474–2499.
[22] El-Meligy, A.B., Koga, N., Iuchi, S., Yoshida, K., Hirao, K., Mangood, A.H., and El-Nahas, A.M., 2018, DFT/TD-DFT calculations of the electronic and optical properties of bis-N,N-dimethylaniline-based dyes for use in dye-sensitized solar cells, J. Photochem. Photobiol., A, 367, 332–346.
[23] Naik, P., Su, R., Babu, D.D., El-Shafei, A., and Adhikari, A.V., 2017, Structurally simple D–A-type organic sensitizers for dye-sensitized solar cells: Effect of anchoring moieties on the cell performance, J. Iran. Chem. Soc., 14 (11), 2457–2466.
[24] Hara, K., Sato, T., Katoh, R., Furube, A., Yoshihara, T., Murai, M., Kurashige, M., Ito, S., Shinpo, A., Suga, S., and Arakawa, H., 2005, Novel conjugated organic dyes for efficient dye-sensitized solar cells, Adv. Funct. Mater., 15 (2), 246–252.
[25] Sánchez-de-Armas, R., San Miguel, M.Á., Oviedo, J., and Sanz, J.F., 2012, Coumarin derivatives for dye sensitized solar cells: A TD-DFT study, Phys. Chem. Chem. Phys., 14 (1), 225–233.
[26] Wang, Z.S., Cui, Y., Hara, K., Dan-oh, Y., Kasada, C., and Shinpo, A., 2007, A high-light-harvesting-efficiency coumarin dye for stable dye-sensitized solar cells, Adv. Mater., 19 (8), 1138–1141.
[27] Wang, Z.S., Cui, Y., Dan-oh, Y., Kasada, C., Shinpo, A., and Hara, K., 2007, Thiophene-functionalized coumarin dye for efficient dye-sensitized solar cells: Electron lifetime improved by coadsorption of deoxycholic acid, J. Phys. Chem. C, 111 (19), 7224–7230.
[28] Cariello, M., Abdalhadi, S.M., Yadav, P., Decoppet, J.D., Zakeeruddin, S.M., Grätzel, M., Hagfeldt, A., and Cooke, G., 2018, An investigation of the roles furan versus thiophene π-bridges play in donor–π-acceptor porphyrin based DSSCs, Dalton Trans., 47 (18), 6549–6556.
[29] Gao, P., Tsao, H.N., Yi, C., Grätzel, M., and Nazeeruddin, M.K., 2014, Extended π‐bridge in organic dye‐sensitized solar cells: The longer, the better?, Adv. Energy Mater., 4 (7), 1301485.
[30] Tsuzuki, K., and Tada, M., 1986, The syntheses of pteridin-2-one derivatives from diaminomaleonitrile (DAMN), J. Heterocycl. Chem., 23 (5), 1299–1301.
[31] Zhou, H., Wang, J., Chen, Y., Xi, W., Zheng, Z., Xu, D., Cao, Y., Liu, G., Zu, W., Wu, J., and Tian, Y., 2013, New diaminomaleonitrile derivatives containing aza-crown ether: Selective, sensitive and colorimetric chemosensors for Cu(II), Dyes Pigm., 98 (1), 1–10.
[32] Anitha, C., Sheela, C.D., Tharmaraj, P., and Shanmugakala, R., 2013, Studies on synthesis and spectral characterization of some transition metal complexes of azo-azomethine derivative of diaminomaleonitrile, Int. J. Inorg. Chem., 2013, 436275.
[33] Aruna, Rani, B., Swami, S., Agarwala, A., Behera, D., and Shrivastava, R., 2019, Recent progress in development of 2,3-diaminomaleonitrile (DAMN) based chemosensors for sensing of ionic and reactive oxygen species, RSC Adv., 9 (52), 30599–30614.
[34] Li, Z., Liu, C., Wang, J., Wang, S., Xiao, L., and Jing, X., 2019, A selective diaminomaleonitrile-based dual channel emissive probe for Al3+ and its application in living cell imaging, Spectrochim. Acta, Part A, 212, 349–355.
[35] Fuse, S., Sugiyama, S., Maitani, M.M., Wada, Y., Ogomi, Y., Hayase, S., Katoh, R., Kaiho, T., and Takahashi, T., 2014, Elucidating the structure–property relationships of donor–π-acceptor dyes for dye-sensitized solar cells (DSSCs) through rapid library synthesis by a one-pot procedure, Chem. Eur. J., 20 (34), 10685–10694.
[36] Matsumura, K., Yoshizaki, S., Maitani, M.M., Wada, Y., Ogomi, Y., Hayase, S., Kaiho, T., Fuse, S., Tanaka, H., and Takahashi, T., 2015, Rapid synthesis of thiophene-based, organic dyes for dye-sensitized solar cells (DSSCs) by a one-pot, four-component coupling approach, Chem. Eur. J., 21 (27), 9742–9747.
[37] Irie, S., Fuse, S., Maitani, M.M., Wada, Y., Ogomi, Y., Hayase, S., Kaiho, T., Masui, H., Tanaka, H., and Takahashi, T., 2016, Rapid synthesis of D-A′-π-A dyes through a one-pot three-component Suzuki–Miyaura coupling and an evaluation of their photovoltaic properties for use in dye-sensitized solar cells, Chem. Eur. J., 22 (7), 2507–2514.
[38] Lee, C., Yang, W., and Parr, R.G., 1988, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B: Condens. Matter, 37 (2), 785–789.
[39] Becke, A.D., 1993, Density‐functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 98 (7), 5648–5652.
[40] Qu, S., Wang, B., Guo, F., Li, J., Wu, W., Kong, C., Long, Y., and Hua, J., 2012, New diketo-pyrrolo-pyrrole (DPP) sensitizer containing a furan moiety for efficient and stable dye-sensitized solar cells, Dyes Pigm., 92 (3), 1384–1393.
DOI: https://doi.org/10.22146/ijc.57535
Article Metrics
Abstract views : 3321 | views : 1960 | views : 859Copyright (c) 2020 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.