Synthesis, Antiproliferative and Antimalarial Activities of Dinuclear Silver(I) Complexes with Triphenylphosphine and Thiosemicarbazones Ligands

https://doi.org/10.22146/ijc.57343

Nur Adila Fatin Mohd Khir(1), Mohd Ridzuan Mohd Abdul Razak(2), Fariza Juliana Nordin(3), Nur Rahimah Fitrah Mohd Sofyan(4), Nur Fadilah Rajab(5), Rozie Sarip(6*)

(1) Department of Chemistry, Faculty of Science, University of Malaya (UM), Lembah Pantai, 50603 Kuala Lumpur, Malaysia
(2) Bioassay Unit, Herbal Medicine Research Centre (HMRC), Institute for Medical Research (IMR), Jl. Pahang, 50588 Kuala Lumpur, Malaysia
(3) Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur Campus, Jl. Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
(4) Department of Chemistry, Faculty of Science, University of Malaya (UM), Lembah Pantai, 50603 Kuala Lumpur, Malaysia
(5) Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur Campus, Jl. Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
(6) Department of Chemistry, Faculty of Science, University of Malaya (UM), Lembah Pantai, 50603 Kuala Lumpur, Malaysia
(*) Corresponding Author

Abstract


A series of six sulfur-bridged dinuclear silver(I) thiosemicarbazone complexes were synthesized through the reaction of silver(I) nitrate with 4-phenyl-3-thiosemicarbazone derivatives together with triphenylphosphine (PPh3) (in a 1:1:2 molar ratio). Following structural characterizations using various techniques such as elemental analysis, Fourier-transform infrared (FTIR) spectroscopy, as well as 1H, 13C, 31P{1H}s, COSY, and 1H-13C nuclear magnetic resonance (NMR) spectroscopy, it was found that the thiosemicarbazone ligand exists in the form of a thione rather than thiol tautomer. Subsequently, MDA-MB-231 and MCF-7 breast cancer cell lines, as well as the HT-29 colon cancer cell lines, were used to investigate the in vitro antiproliferative activities of these complexes. In all cases, the IC50 values were in the potent micromolar range. Besides, the aforementioned complexes also had good antiplasmodial activity against chloroquine-resistant P. falciparum, as per the results of histidine-rich protein 2 (HRP2) assays and cytotoxicity evaluations of MDBK cells.


Keywords


thiosemicarbazone; silver complexes; antiplasmodial; antiproliferative; phosphine



References

[1] Chen, J.J., Gan, Z.L., Huang, Q., and Yi, X.Y., 2017, Well-defined dinuclear silver phosphine complexes based on nitrogen donor ligand and their high efficient catalysis for A3-coupling reaction, Inorg. Chim. Acta, 466, 93–99.

[2] Papanikolaou, P.A., Papadopoulos, A.G., Andreadou, E.G., Hatzidimitriou, A., Cox, P.J., Pantazaki, A.A., and Aslanidis, P., 2015, The structural and electronic impact on the photophysical and biological properties of a series of CuI and AgI complexes with triphenylphosphine and pyrimidine-type thiones, New J. Chem., 39 (6), 4830–4844.

[3] Engelbrecht, Z., Meijboom, R., and Cronjé, M.J., 2018, The ability of silver(I) thiocyanate 4-methoxyphenyl phosphine to induce apoptotic cell death in esophageal cancer cells is correlated to mitochondrial perturbations, BioMetals, 31 (2), 189–202.

[4] Human, Z., Munyaneza, A., Omondi, B., Sanabria, N.M., Meijboom, R., and Cronjé, M.J., 2014, The induction of cell death by phosphine silver(I) thiocyanate complexes in SNO-esophageal cancer cells, BioMetals, 28 (1), 219–228.

[5] Chaves, J.D.S., Neumann, F., Francisco, T.M., Corrêa, C.C., Lopes, M.T.P., Silva, H., Fontes, A.P.S., and de Almeida, M.V., 2014, Synthesis and cytotoxic activity of gold(I) complexes containing phosphines and 3-benzyl-1,3-thiazolidine-2-thione or 5-phenyl-1,3,4-oxadiazole-2-thione as ligands, Inorg. Chim. Acta, 414, 85–90.

[6] Adams, M., Barnard, L., de Kock, C., Smith, P.J., Wiesner, L., Chibale, K., and Smith, G.S., 2016, Cyclopalladated organosilane-tethered thiosemicarbazones: Novel strategies for improving antiplasmodial activity, Dalton Trans., 45 (13), 5514–5520.

[7] Haas, K.L., and Franz, K.J., 2009, Application of metal coordination chemistry to explore and manipulate cell biology, Chem. Rev., 109 (10), 4921–4960.

[8] Viñuelas-Zahínos, E., Luna-Giles, F., Torres-Garcia, P., and Fernández-Calderón, M.C., 2011, Co(III), Ni(II), Zn(II) and Cd(II) complexes with 2-acetyl-2-thiazoline thiosemicarbazone: Synthesis, characterization, X-ray structures and antibacterial activity, Eur. J. Med. Chem., 46 (1), 150–159.

[9] Mustafa, A.Z.A., Altaf, M., Monim-ul-Mehboob, M., Fettouhi, M., Wazeer, M.I.M., Isab, A.A., Dhuna, V., Bhatia, G., and Dhuna, K., 2014, Tetrakis(1-3-diazinane-2-thione)platinum(II) chloride monohydrate complex: Synthesis, spectroscopic characterization, crystal structure and in vitro cytotoxic activity against A549, MCF7, HCT15 and HeLa human cancer lines, Inorg. Chem. Commun., 44, 159–163.

[10] Netalkar, P.P., Netalkar, S.P., and Revankar, V.K., 2014, Nickel(II) complexes of thiosemicarbazones: synthesis, characterization, X-ray crystallographic studies and in vitro antitubercular and antimicrobial studies, Transition Met. Chem., 39 (5), 519–526.

[11] Shahsavani, E., Khalaji, A.D., Feizi, N., Kučeráková, M., and Dušek, M., 2015, Synthesis, characterization, crystal structure and antibacterial activity of new sulfur-bridged dinuclear silver(I) thiosemicarbazone complex [Ag2(PPh3)2(μ-S-Brcatsc)21-S-Brcatsc)2](NO3)2, Inorg. Chim. Acta, 429, 61–66.

[12] Hemmert, C., Fabié, A., Fabre, A., Benoit-Vical, F., and Gornitzka, H., 2013, Synthesis, structures, and antimalarial activities of some silver(I), gold(I) and gold(III) complexes involving N-heterocyclic carbene ligands, Eur. J. Med. Chem., 60, 64–75.

[13] Isab, A.A., Nawaz, S., Saleem, M., Altaf, M., Monim-ul-Mehboob, M., Ahmad, S., and Evans, H.S., 2010, Synthesis, characterization and antimicrobial studies of mixed ligand silver(I) complexes of thioureas and triphenylphosphine; crystal structure of {[Ag(PPh3)(thiourea)(NO3)]2·[Ag(PPh3)(thiourea)]2(NO3)2}, Polyhedron, 29 (4), 1251–1256.

[14] Chaves, J.D.S., Tunes, L.G., de J. Franco, C.H., Francisco, T.M., Corrêa, C.C., Murta, S.M.F., Monte-Neto, R.L., Silva, H., Fontes, A.P., and de Almeida, M.V., 2017, Novel gold(I) complexes with 5-phenyl-1,3,4-oxadiazole-2-thione and phosphine as potential anticancer and antileishmanial agents, Eur. J. Med. Chem., 127, 727–739.

[15] Benmohammed, A., Khoumeri, O., Djafri, A., Terme, T., and Vanelle, P., 2014, Synthesis of novel highly functionalized 4-thiazolidinone derivatives from 4-phenyl-3-thiosemicarbazones, Molecules, 19 (3), 3068–3083.

[16] Noedl, H., Bronnert, J., Yingyuen, K., Attlmayr, B., Kollaritsch, H., and Fukuda, M., 2005, Simple histidine-rich protein 2 double-site sandwich enzyme-linked immunosorbent assay for use in malaria drug sensitivity testing, Antimicrob. Agents Chemother., 49 (8), 3575–3577.

[17] Noedl, H., Wernsdorfer, W.H., Miller, R.S., and Wongsrichanalai, C., 2002, Histidine-rich protein II: A novel approach to malaria drug sensitivity testing, Antimicrob. Agents Chemother., 46 (6), 1658–1664.

[18] Mohd Abd Razak, M.R., Afzan, A., Ali, R., Amir Jalaluddin, N.F., Wasiman, M.I., Shiekh Zahari, S.H., Abdullah, N.R., and Ismail, Z., 2014, Effect of selected local medicinal plants on the asexual blood stage of chloroquine resistant Plasmodium falciparum, BMC Complementary Altern. Med., 14 (1), 492.

[19] Noedl, H., Wernsdorfer, W.H., Kollaritsch, H., Looareesuwan, S., Miller, R.S., and Wongsrichanalai, C., 2003, Malaria drug-susceptibility testing. HRP2-based assays: current data, future perspectives, Wien. Klin. Wochenschr., 115 (Suppl. 3), 23–27.

[20] Mosmann, T., 1983, Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays, J. Immunol. Methods, 65 (1-2), 55–63.

[21] Vichai, V., and Kirtikara, K., 2006, Sulforhodamine B colorimetric assay for cytotoxicity screening, Nat. Protocols, 1 (3), 1112–1116.

[22] Altaf, M., Stoeckli-Evans, H., Cuin, A., Sato, D.N., Pavan, F.R., Leite, C.Q.F., Ahmad, S., Bouakka, M., Mimouni, M., Khardli, F.Z., and Hadda, T.B., 2013, Synthesis, crystal structures, antimicrobial, antifungal and antituberculosis activities of mixed ligand silver(I) complexes, Polyhedron, 62, 138–147.

[23] Sultana, R., Lobana, T.S., Sharma, R., Castineiras, A., Akitsu, T., Yahagi, K., and Aritake, Y., 2010, Heterocyclic thioamide derivatives of coinage metals (Cu, Ag): Synthesis, structures and spectroscopy, Inorg. Chim. Acta, 363 (13), 3432–3441.

[24] Sharma, R., Lobana, T.S., Kaur, M., Thathai, N., Hundal, G., Jasinski, J.P., and Butcher, R.J., 2016, Variable coordinating activity of sulfur in silver(I) complexes with thiophene based N-1-substituted thiosemicarbazones: First case of thiopheneyl-thione sulfur bridging in a dinuclear complex, J. Chem. Sci., 128 (7), 1103–1112.

[25] Nawaz, S., Isab, A.A., Merz, K., Vasylyeva, V., Metzler-Nolte, N., Saleem, M., and Ahmad, S., 2011, Synthesis, characterization and antimicrobial studies of mixed ligand silver(I) complexes of triphenylphosphine and heterocyclic thiones: Crystal structure of bis[{(μ2-diazinane-2-thione)(diazinane-2-thione)(triphenylphosphine)silver(I) nitrate}], Polyhedron, 30 (9), 1502–1506.

[26] Venkatachalam, T.K., Pierens, G.K., Bernhardt, P.V., Stimson, D.H.R., Bhalla, R., Lambert, L., and Reutens, D.C., 2016, Heteronuclear NMR spectroscopic investigations of gallium complexes of substituted thiosemicarbazones including X-ray crystal structure, a new halogen exchange strategy, and 18F radiolabelling, Aust. J. Chem., 69 (9), 1033–1048.

[27] Waiganjo, B., Moriasi, G., Onyancha, J., Elias, N., and Muregi, F., 2020, Antiplasmodial and cytotoxic activities of extracts of selected medicinal plants used to treat malaria in Embu county, Kenya, J. Parasitol. Res., 2020, 8871375.

[28] Souza, M.C., Padua, T.A., Torres, N.D., Costa, M.F.S., Facchinetti, V., Gomes, C.R.B., Souza, M.V.N., and Henriques, M.G., 2015, Study of the antimalarial properties of hydroxyethylamine derivatives using green fluorescent protein transformed Plasmodium berghei, Mem. Inst. Oswaldo Cruz, 110 (4), 560–565.

[29] Loginova, N.V., Koval'chuk, T.V., Gres, A.T., Osipovich, N.P., Polozov, G.I., Halauko, Y.S., Faletrov, Y.V., Harbatsevich, H.I., Hlushko, A.V., Azarko, I.I., and Bokshits, Y.V., 2015, Redox-active metal complexes of sterically hindered phenolic ligands: Antibacterial activity and reduction of cytochrome c. Part IV. Silver(I) complexes with hydrazone and thiosemicarbazone derivatives of 4,6-di-tert-butyl-2,3-dihydroxybenzaldehyde, Polyhedron, 88, 125–137.

[30] Wani, W.A., Jameel, E., Baig, U., Mumtazuddin, S., and Hun, L.T., 2015, Ferroquine and its derivatives: New generation of antimalarial agents, Eur. J. Med. Chem., 101, 534–551.

[31] Medici, S., Peana, M., Nurchi, V.M., Lachowicz, J.I., Crisponi, G., and Zoroddu, M.A., 2015, Noble metals in medicine: Latest advances, Coord. Chem. Rev., 284, 329–350.

[32] Banti, C.N., and Hadjikakou, S.K., 2013, Anti-proliferative and anti-tumor activity of silver(I) compounds, Metallomics, 5 (6), 569–596.

[33] Majeed, S., Abdullah, M.S., Nanda, A., and Ansari, M.T., 2016, In vitro study of the antibacterial and anticancer activities of silver nanoparticles synthesized from Penicillium brevicompactum (MTCC-1999), J. Taibah Univ. Sci., 10 (4), 614–620.

[34] Ndagi, U., Mhlongo, N., and Soliman, M.E., 2017, Metal complexes in cancer therapy - an update from drug design perspective, Drug Des., Dev. Ther., 11, 599–616.

[35] Arora, S., Agarwal, S., and Singhal, S., 2014, Anticancer activities of thiosemicarbazides/thiosemicarbazones: A review, Int. J. Pharm. Pharm. Sci., 6 (9), 34–41.

[36] Serda, M., Kalinowski, D.S., Rasko, N., Potůčková, E., Mrozek-Wilczkiewicz, A., Musiol, R., Małecki, J.G., Sajewicz, M., Ratuszna, A., Muchowicz, A., Gołąb, J., Šimůnek, T., Richardson, D.R., and Polanski, J., 2014, Exploring the anti-cancer activity of novel thiosemicarbazones generated through the combination of retro-fragments: Dissection of critical structure-activity relationships, Plos One, 9 (10), e110291.

[37] Human-Engelbrecht, Z., Meijboom, R., and Cronjé, M.J., 2017, Apoptosis-inducing ability of silver(I) cyanide-phosphines useful for anti-cancer studies, Cytotechnology, 69 (4), 591–600.

[38] Kyros, L., Kourkoumelis, N., Kubicki, M., Male, L., Hursthouse, M.B., Verginadis, I.I., Gouma, E., Karkabounas, S., Charalabopoulos, K., and Hadjikakou, S.K., 2010, Structural properties, cytotoxicity, and anti-inflammatory activity of silver(I) complexes with tris(p-tolyl)phosphine and 5-chloro-2-mercaptobenzothiazole, Bioinorg. Chem. Appl., 2010, 386860.

[39] Abdul Halim, S.N.A., Nordin, F.J., Mohd Abd Razak, M.R., Mohd Sofyan, N.R.F., Abdul Halim, S.N., Rajab, N.F., and Sarip, R., 2019, Synthesis, characterization, and evaluation of silver(I) complexes with mixed-ligands of thiosemicarbazones and diphenyl(p-tolyl)phosphine as biological agents, J. Coord. Chem., 72 (5-7), 879–893.



DOI: https://doi.org/10.22146/ijc.57343

Article Metrics

Abstract views : 965 | views : 343 | views : 94


Copyright (c) 2021 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.