Development of Voltammetry Analysis Method of Copper Metal Ions by Solid-State Membrane with Carbon Nanotube

https://doi.org/10.22146/ijc.55056

Suyanta Suyanta(1*), Sunarto Sunarto(2), Regina Tutik Padmaningrum(3), Karlinda Karlinda(4), Illyas Md. Isa(5), Rahadian Rahadian(6)

(1) Department of Chemistry Education, Universitas Negeri Yogyakarta, Jl. Colombo No. 1, Yogyakarta 55281, Indonesia
(2) Department of Chemistry Education, Universitas Negeri Yogyakarta, Jl. Colombo No. 1, Yogyakarta 55281, Indonesia
(3) Department of Chemistry Education, Universitas Negeri Yogyakarta, Jl. Colombo No. 1, Yogyakarta 55281, Indonesia
(4) Department of Chemistry Education, Universitas Negeri Yogyakarta, Jl. Colombo No. 1, Yogyakarta 55281, Indonesia
(5) Nanotechnology Research Centre, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia
(6) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Jl. Prof. Dr. Hamka, Padang 25173, West Sumatera, Indonesia
(*) Corresponding Author

Abstract


This study was aimed to develop a method for metal analysis in continuous integration using voltammetry techniques. The research subject was copper(II) ions. The objects of research were linearity, scan rate, repeatability of readings, and the presence of Cu(II) levels in well water samples. In this study, a selective electrode was developed with a solid membrane voltammetry system using differential pulse voltammetry measurement. The results showed the regression line of voltammetry method, y = 10.265 ln (x) + 330.47, with a correlation value of 0.9654, the optimum scan rate was 10 mV/s, and within five repetitions of each measurement for one electrode, it showed good repeatability. Meanwhile, the result of regression with the UV-Vis spectrophotometric method for Cu(II) was y = 0.12386x + 0.00879 with a correlation value of 0.9943. The voltammetry method was found to be much better than the UV-Vis method because it was able to be used for analysis up to a concentration of 6.35 × 10–4 ppm (or 1.00 × 10–11 M), while the UV-Vis method was only able to analyze up to 1.5 ppm (or 2.36 × 10–5 M).

Keywords


copper(II); spectrophotometry; voltammetry; nanotube carbon; solid-state membrane

Full Text:

Full Text PDF


References

[1] Pratiwi, A., Yusuf, B., and Gunawan, R., 2015, Analisis perubahan kadar logam tembaga (Cu) pada penambahan ion perak (Ag) dengan metode elektrokoagulasi, JKM, 13 (1), 1–3.

[2] Parmar, M., and Takur, L.S., 2013, Heavy metal Cu Ni and Zn: Toxicity, health hazards and their removal techniques by low cost adsorbents: A short overview, Int. J. Plant Anim. Environ. Sci., 3 (3), 2231–4490.

[3] Kooh, M.R.R., Santos, J.H., and Dahri, M.K., 2013, Preparation and evaluation of Acetabularia-modified carbon paste electrode in anodic stripping voltammetry of copper and lead ions, J. Chem., 2013, 538012.

[4] Stankovic, D., Roglic, G., Mutic, J., Andjelkovic, I., Markovic, M., and Manojlovic, D., 2011, Determination of copper in water by anodic stripping voltammetry using Cu-DPABA-NA/GCE modified electrode, Int. J. Electrochem. Sci., 6, 5617–5625.

[5] Ganjali, M.R., Norouzi, P., Shamsolahrari, L., and Ahmadi, A., 2006, PPb level monitoring of lanthanium by a novel PCV-membrane sensor based on 4-methyl-2-hydrazinobenzothiazole, Sens. Actuators, B, 114 (2), 713–719.

[6] Pandurangachar, M., Swamy, B.E.K., Chandrashekar, B.N., Gilbert, O., Reddy, S., and Sherigara, B.S., 2010, Electrochemical investigations of potassium ferricyanide and dopamine by 1-butyl-4-methylpyridinium tetrafluoro borate modified carbon paste electrode: A cyclic voltammetric study, Int. J. Electrochem. Sci., 5, 1187–1202.

[7] Ensafi, A.A., and Karimi-Maleh, H., 2010, Modified Multiwall carbon nanotubes paste electrode as a sensor for simultaneous determination of 6-thioguanine and folic acid using ferrocenedicarboxylic acid as a mediator, J. Electroanal. Chem., 640 (1-2) 75–83.

[8] Putra, B.R., Darusman, L.K., and Rohaeti, E., 2013, Carbon paste electrode hexadecyltrimethylammonium bromide modified natural zeolite for chromium(VI) detection, Indones. J. Chem., 13 (2), 122–128.

[9] Deswati, Suyani, H., Safni, Loekman, U., and Pardi, H., 2013, Simultaneous determination of cadmium, copper and lead in sea water by adsorptive stripping voltammetry in the presence of calcon as a complexing agent, Indones. J. Chem., 13 (3), 236–241.

[10] Thanh, N.M., Hop, N.V., Luyen, N.D., Phong, N.H., and Toan, T.T.T., 2019, Simultaneous determination of Zn(II), Cd(II), Pb(II), and Cu(II) using differential pulse anodic stripping voltammetry at a bismuth film-modified electrode, Adv. Mater. Sci. Eng., 2019, 1826148.

[11] Deswati, Suyani, H., and Safni, 2012, The method development of analysis Cd, Cu, Pb and Zn in sea water by absorptive stripping voltammetry (ASV) in the presence of calcon as complexing agent, Indones. J. Chem., 12 (1), 20–27.

[12] Adekunle, A.S., Arotiba, O.A., Agboola, B.O., Maxakato, N.W., and Mamba, B.B., 2012, Voltammetric and impedance studies of phenols and its derivatives at carbon nanotubes/Prussian blue films platinum modified electrode, Int. J. Electrochem. Sci., 7, 8035–8051.

[13] Madrakian, T., Haghshenas, E., and Afkhami, A., 2014, Simultaneous determination of tyrosine, acetaminophen and ascorbic acid using gold nanoparticles/multiwalled carbon nanotube/glassy carbon electrode by differential pulse voltammetric method, Sens. Actuators, B, 193, 451–460.

[14] Khan, R., Gorski, W., and Garcia, C.D., 2011, Nanomolar detection of glutamate at a biosensor based on screen-printed electrodes modified with carbon nanotubes, Electroanalysis, 23 (10), 2357–2363.

[15] Skoog, D.A., Holler, F.J., and Crouth, S.R., 2018, Principles of Instrumental Analysis, Textbook of Instrumental Analysis, 7th Ed., Thomson Brook/Cole, California.

[16] Zubair, S., Asghar, F., Badshah, A., Lal, B., Hussain, R.A., Tabassum, S., and Tahir, M.N., 2019, New bioactive ferrocene-subsituted heteroleptic copper(I) complex: Synthesis, structural elucidation, DNA interaction, and DFT study, J. Organomet. Chem., 879, 60–68.

[17] Sirotiak, M., Bartošová, A., and Blinová, L., 2014, UV-Vis Spectrophotometric determinations of selected elements in modelled aqueous solutions, J. Environ. Prot. Saf. Educ. Manage., 3 (2), 75–87.

[18] Farahi, A., Lahrich, S., Achak, M., El Gaini, L., Bakasse, M., and El Mhammedi, M.A., 2014, Parameters affecting the determination of paraquat at silver rotating electrodes using differential pulse voltammetry, Anal. Chem. Res., 1, 16–21.

[19] Suyanta, Sunarto, Sari, L.P., Wardani, N.I., and Isa, I.M., 2014, Differential adsorptive stripping voltammetric determination of ultra trace lanthanum(III) based on carbon paste electrode modified with 3-methyl-2-hydrazinobenzothiazole, Int. J. Electrochem. Sci., 9, 7763–7772.

[20] Mohadesi, A., Teimoori, E., Taher, M.A., and Beitollah, H., 2011, Adsorptive stripping voltammetric determination of cobalt(II) on the carbon paste electrode, Int. J. Electrochem. Sci., 6, 301–308.

[21] Arancibi, V., Nagles, E., García-Beltrán, O., and Hurtad, J., 2018, Adsorptive stripping voltammetric determination of lead and cadmium in natural waters in the presence of rutin using a Nafion–mercury coated film electrode, Int. J. Electrochem. Sci., 13, 8711–8722.

[22] Wang, H.Y., Pan, M.I., Oliver Su, Y.L., Tsai, S.C., Kao, C.H., Sun, S.S., and Lin, W.Y., 2011, Comparison of differential pulse voltammetry (DPV)-A new method of carbamazepine analysis-with fluorescence polarization immunoassay (FPIA), J. Anal. Chem., 66 (4), 415–420.

[23] Pratiwi, N.A., and Sunarto, 2018, Perbandingan validasi metode analisis ion tembaga (II) tanpa pengompleks dan dengan pengompleks Na-dietilditiokarbamat secara spektrofotometri UV-Vis, J. Kim. Das., 7 (3), 96–104.

[24] Helsel, M.E., and Franz, K.J., 2015, Pharmacological activity of metal binding agents that alter copper bioavailability, Dalton Trans., 44 (19), 8760–8770.

[25] Sandford, C., Edwards, M.A., Klunder, K.J., Hickey, D.P., Li, M., Barman, K., Sigman, M.S., White, H.S., and Minteer, S.D., 2019, A synthetic chemist’s guide to electroanalytical tools for studying reaction mechanism, Chem. Sci., 10 (26), 6404–6422.

[26] Silva, T.A., Wong, A., and Fatibello-Filho, O., 2020, Electrochemical sensor based on ionic liquid and carbon black for voltammetric determination of Allura red colorant at nanomolar levels in soft drink powders, Talanta, 209, 120588.



DOI: https://doi.org/10.22146/ijc.55056

Article Metrics

Abstract views : 3141 | views : 2379


Copyright (c) 2021 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.