Structure-Based Design and Molecular Dynamics Simulations of Pentapeptide AEYTR as a Potential Acetylcholinesterase Inhibitor
Vivitri Dewi Prasasty(1), Enade Perdana Istyastono(2*)
(1) Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta 12930, Indonesia
(2) Faculty of Pharmacy, Sanata Dharma University, Paingan, Maguwoharjo, Depok, Sleman, Yogyakarta 55282
(*) Corresponding Author
Abstract
Keywords
Full Text:
Full Text PDFReferences
[1] Mehta, M., Adem, A., and Sabbagh, M., 2012, New acetylcholinesterase inhibitors for Alzheimer’s disease, Int. J. Alzheimers Dis., 2012, 728983.
[2] Fillit, H., and Hill, J., 2005, Economics of dementia and pharmacoeconomics of dementia therapy, Am. J. Geriatr. Pharmacother., 3 (1), 39–49.
[3] Knapp, M., King, D., Romeo, R., Adams, J., Baldwin, A., Ballard, C., Banerjee, S., Barber, R., Bentham, P., Brown, R.G., Burns, A., Dening, T., Findlay, D., Holmes, C., Johnson, T., Jones, R., Katona, C., Lindesay, J., Macharouthu, A., McKeith, I., McShane, R., O’Brien, J.T., Phillips, P.P.J., Sheehan, B., and Howard, R., 2017, Cost-effectiveness of donepezil and memantine in moderate to severe Alzheimer’s disease (the DOMINO-AD trial), Int. J. Geriatr. Psychiatry, 32 (12), 1205–1216.
[4] Ahmadi-Abhari, S., Guzman-Castillo, M., Bandosz, P., Shipley, M.J., Muniz-Terrera, G., Singh-Manoux, A., Kivimäki, M., Steptoe, A., Capewell, S., O’Flaherty, M., and Brunner, E.J., 2017, Temporal trend in dementia incidence since 2002 and projections for prevalence in England and Wales to 2040: Modelling study, BMJ, 358, j2856.
[5] Murray, A.P., Faraoni, M.B., Castro, M.J., Alza, N.P., and Cavallaro, V., 2013, Natural AChE inhibitors from plants and their contribution to Alzheimer’s disease therapy, Curr. Neuropharmacol., 11 (4), 388–413.
[6] Macalino, S.J.Y., Gosu, V., Hong, S., and Choi, S., 2015, Role of computer-aided drug design in modern drug discovery, Arch. Pharmacal Res., 38 (9), 1686–1701.
[7] Tanrikulu, Y., Proschak, E., Werner, T., Geppert, T., Todoroff, N., Klenner, A., Kottke, T., Sander, K., Schneider, E., Seifert, R., Stark, H., Clark, T., and Schneider, G., 2009, Homology model adjustment and ligand screening with a pseudoreceptor of the human histamine H4 receptor, ChemMedChem, 4 (5), 820–827.
[8] Sirci, F., Istyastono, E.P., Vischer, H.F., Kooistra, A.J., Nijmeijer, S., Kuijer, M., Wijtmans, M., Mannhold, R., Leurs, R., de Esch, I.J.P., and de Graaf, C., 2012, Virtual fragment screening: discovery of histamine H(3) receptor ligands using ligand-based and protein-based molecular fingerprints, J. Chem. Inf. Model., 52 (12), 3308–3324.
[9] Istyastono, E.P., Nurrochmad, A., and Yuniarti, N., 2016, Structure-Based virtual screening campaigns on curcuminoids as potent ligands for histone deacetylase-2, Orient. J. Chem., 32 (1), 275–282.
[10] Istyastono, E.P., Kooistra, A.J., Vischer, H., Kuijer, M., Roumen, L., Nijmeijer, S., Smits, R., de Esch, I.J.P., Leurs, R., and de Graaf, C., 2015, Structure-based virtual screening for fragment-like ligands of the G protein-coupled histamine H4 receptor, Med. Chem. Commun., 6 (6), 1003–1017.
[11] Kiss, R., Kiss, B., Könczöl, A., Szalai, F., Jelinek, I., László, V., Noszál, B., Falus, A., and Keseru, G.M., 2008, Discovery of novel human histamine H4 receptor ligands by large-scale structure-based virtual screening, J. Med. Chem., 51 (11), 3145–3153.
[12] de Graaf, C., Kooistra, A.J., Vischer, H.F., Katritch, V., Kuijer, M., Shiroishi, M., Iwata, S., Shimamura, T., Stevens, R.C., de Esch, I.J.P., and Leurs, R., 2011, Crystal structure-based virtual screening for fragment-like ligands of the human histamine H(1) receptor, J. Med. Chem., 54 (23), 8195–8206.
[13] Marcou, G., and Rognan, D., 2007, Optimizing fragment and scaffold docking by use of molecular interaction fingerprints, J. Chem. Inf. Model., 47 (1), 195–207.
[14] Radifar, M., Yuniarti, N., and Istyastono, E.P., 2013, PyPLIF-assisted redocking indomethacin-(R)-alpha-ethyl-ethanolamide into cyclooxygenase-1, Indones. J. Chem., 13 (3), 283–286.
[15] Radifar, M., Yuniarti, N., and Istyastono, E.P., 2013, PyPLIF: Python-based protein-ligand interaction fingerprinting, Bioinformation, 9 (6), 325–328.
[16] Schultes, S., Nijmeijer, S., Engelhardt, H., Kooistra, A.J., Vischer, H.F., de Esch, I.J.P., Haaksma, E.E.J., Leurs, R., and de Graaf, C., 2013, Mapping histamine H4 receptor–ligand binding modes, Med. Chem. Commun., 4 (1), 193–204.
[17] Istyastono, E.P., Yuniarti, N., Hariono, M., Yuliani, S.H., and Riswanto, F.D.O., 2017, Binary quantitative structure-activity relationship analysis in retrospective structure based virtual screening campaigns targeting estrogen receptor alpha, Asian J. Pharm. Clin. Res., 10 (12), 206–211.
[18] Riswanto, F.D.O., Hariono, M., Yuliani, S.H., and Istyastono, E.P., 2017, Computer-aided design of chalcone derivatives as lead compounds targeting acetylcholinesterase, Indonesian J. Pharm., 28 (2), 100–111.
[19] Mysinger, M.M., Carchia, M., Irwin, J.J., and Shoichet, B.K., 2012, Directory of useful decoys, enhanced (DUD-E): Better ligands and decoys for better benchmarking, J. Med. Chem., 55 (14), 6582–6594.
[20] Prasasty, V., Radifar, M., and Istyastono, E.P., 2018, Natural peptides in drug discovery targeting acetylcholinesterase, Molecules, 23 (9), 2344.
[21] Krieger, E., and Vriend, G., 2015, New ways to boost molecular dynamics simulations, J. Comput. Chem., 36 (13), 996–1007.
[22] Chen, H., Zhu, X., Guo, H., Zhu, J., Qin, X., and Wu, J., 2015, Towards energy-efficient scheduling for real-time tasks under uncertain cloud computing environment, J. Syst. Software, 99, 20–35.
[23] Liu, K., Watanabe, E., and Kokubo, H., 2017, Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations, J. Comput.-Aided Mol. Des., 31 (2), 201–211.
[24] Trott, O., and Olson, A.J., 2010, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem., 31 (2), 455–461.
[25] Dvir, H., Wong, D.M., Harel, M., Barril, X., Orozco, M., Luque, F.J., Munoz-Torrero, D., Camps, P., Rosenberry, T.L., Silman, I., and Sussman, J.L., 2002, 3D structure of Torpedo californica acetylcholinesterase complexed with huprine X at 2.1 Å resolution: Kinetic and molecular dynamic correlates, Biochemistry, 41 (9), 2970–2981.
[26] Yuniarti, N., Mungkasi, S., Yuliani, S.H., and Istyastono, E.P., 2019, Development of a graphical user interface application to identify marginal and potent ligands for estrogen receptor alpha, Indones. J. Chem., 19 (2), 531–537.
DOI: https://doi.org/10.22146/ijc.46329
Article Metrics
Abstract views : 5309 | views : 3792Copyright (c) 2019 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.