Synthesis, Structural and Optical Characterization of Titanium Dioxide Doped by (Ce, Yb) Dedicated to Photonic Conversion

Zobair El Afia(1*), Mohamed Youssef Messous(2), Mohamed Cherkaoui(3), Mounia Tahri(4)
(1) Laboratory of Materials, Electrochemistry, and Environment, Faculty of Sciences, University Ibn Tofail, 14000 Kenitra, Morocco
(2) Material Sciences Unit USM/DERS, National Center for Energy, Sciences and Nuclear Techniques-CNESTEN, B.P 1382 R.P 10001 Rabat, Morocco
(3) Laboratory of Materials, Electrochemistry, and Environment, Faculty of Sciences, University Ibn Tofail, 14000 Kenitra, Morocco
(4) National Center for Energy, Sciences and Nuclear Techniques-CNESTEN-B.P 1382 R.P 10001 Rabat, Morocco
(*) Corresponding Author
Abstract
Keywords
Full Text:
Full Text PDFReferences
[1] Haider, A.J., AL-Anbari, R.H., Kadhim, G.R., and Salame, C.T., 2017, Exploring potential environmental applications of TiO2 nanoparticles, Energy Procedia, 119, 332–345.
[2] Gupta, K.K., Jassal, M., and Agrawal, A.K., 2008, Sol-gel derived titanium dioxide finishing of cotton fabric for self cleaning, Indian J. Fibre Text. Res., 33, 443–450.
[3] Afuyoni, M., Nashed, G., and Nasser, I.M., 2011, TiO2 doped with SnO2 and studing its structurail and electrical properties, Energy Procedia., 6, 11–20.
[4] Ray, S., and Lalman, J.A., 2016, Fabrication and characterization of an immobilized titanium dioxide (TiO2) nanofiber photocatalyst, Mater. Today-Proc., 3 (6), 1582–1591.
[5] Banfield, J.R., and Zhang, H., 2001, Nanoparticles in the environment, Rev. Mineral. Geochem., 44 (1), 1–58.
[6] Feng, X., Wang, Q., Wang, G., and Qui, F., 2006, Preparation of nano-TiO2 by ethanol-thermal method and its catalytic performance for synthesis of dibutyl carbonate by transesterification, Chin. J. Catal., 27 (3), 195–196.
[7] Askari, M.B., Banizi, Z.T., Soltani, S., and Seifi, M., 2018, Comparison of optical properties and photocatalytic behavior of TiO2/MWCNT, CdS/MWCNT and TiO2/CdS/MWCNT nanocomposites, Optik, 157, 230–239.
[8] Wang, F., Shi, Z., Gong, F., Jiu, J., and Adachi, M., 2007, Morphology control of anatase TiO2 by surfactant-assisted hydrothermal method, Chin. J. Chem. Eng., 15 (5), 754–759.
[9] Peng, F., Cai, L., Huang, L., Yu, H., and Wang, H., 2008, Preparation of nitrogen-doped titanium dioxide with visible-light photocatalytic activity using a facile hydrothermal method, J. Phys. Chem. Solids, 69 (7), 1657–1664.
[10] Li, G., Chen, L., Dimitrijevic, N.M., and Gray, K.A., 2008, Visible light photocatalytic properties of anion-doped TiO2 materials prepared from a molecular titanium precursor, Chem. Phys. Lett., 451 (1-3), 75–79.
[11] Zhao, X., Liu, M., and Zhu, Y., 2007, Fabrication of porous TiO2 film via hydrothermal method and its photocatalytic performances, Thin Solid Films, 515 (18), 7127–7134.
[12] Askari, M.B., Banizi, Z.T., Seifi, M., Dehaghi, S.B., and Veisi, P., 2017, Synthesis of TiO2 nanoparticles and decorated multi-wall carbon nanotube (MWCNT) with anatase TiO2 nanoparticles and study of optical properties and structural characterization of TiO2/MWCNT nanocomposite, Optik, 149, 447–454.
[13] Salehi, A., Mashhadi, H.A., Abravi, M.S., and Jafarian, H.R., 2015, An ultrasound assisted method on the formation of nanocrystalline fluorohydroxyapatite coatings on titanium scaffold by dip coating process, Procedia Mater. Sci., 11, 137–141.
[14] Mahadik, S.A., Pedraza, F., and Mahadik, S.S., 2016, Comparative studies on water repellent coatings prepared by spin coating and spray coating methods, Prog. Org. Coat., 104, 217–222.
[15] Karuppuchamy, S., Suzuki, N., Ito, S., and Endo, T., 2009, A novel one-step electrochemical method to obtain crystalline titanium dioxide films at low temperature, Curr. Appl. Phys., 9 (1), 243–248.
[16] Song, W., Wu, X., Qin, W., and Jiang, Z., 2007, TiO2 films prepared by micro-plasma oxidation method for dye-sensitized solar cell, Electrochim. Acta, 53 (4), 1883–1889.
[17] Anicai, L., Petica, A., Patroi, D., Marinescu, V., Prioteasa, P., and Costovici, S., 2015, Electrochemical synthesis of nanosized TiO2 nanopowder involving choline chloride based ionic liquids, Mater. Sci. Eng., B, 199, 87–95.
[18] Kim, B.H., Lee, J.Y., Choa, Y.H., Higuchi, M., and Mizutani, N., 2004, Preparation of TiO2 thin film by liquid sprayed mist CVD method, Mater. Sci. Eng., B, 107 (3), 289–294.
[19] Chernozem, R.V., Surmeneva, M.A., Krause, B., Baumbach, T., Ignatov, V.P., Tyurin, A.I., Loza, K., Epple, M., and Surmenev, R.A., 2017, Hybrid biocomposites based on titania nanotubes and a hydroxyapatite coating deposited by RF-magnetron sputtering: Surface topography, structure, and mechanical properties, Appl. Surf. Sci., 426, 229–237.
[20] Akpan, U.G., and Hameed, B.H., 2010, The advancements in sol–gel method of doped-TiO2 photocatalysts, Appl. Catal., A, 375 (1), 1–11.
[21] Crişan, M., Brăileanu, A., Răileanu, M., Zaharescu, M., Crişan, D., Drăgan, N., Anastasescu, M., Ianculescu, A., Niţoi, I., Marinescu, V.E., and Hodorogea, S.M., 2008, Sol–gel S-doped TiO2 materials for environmental protection, J. Non-Cryst. Solids, 354 (2-9), 705–711.
[22] Shi, J.W., Zheng, J.T., Hu, Y., and Zhao, Y.C., 2007, Influence of Fe3+ and Ho3+ co-doping on the photocatalytic activity of TiO2, Mater. Chem. Phys., 106 (2-3), 247–249.
[23] Saif, M., and Abdel-Mottaleb, M.S.A., 2007, Titanium dioxide nanomaterial doped with trivalent lanthanide ions of Tb, Eu and Sm: Preparation, characterization and potential applications, Inorg. Chim. Acta, 360 (9), 2863–2874.
[24] Fan, X., Chen, X., Zhu, S., Li, Z., Yu, T., Ye, J., and Zou, Z., 2008, The structural, physical and photocatalytic properties of the mesoporous Cr-doped TiO2, J. Mol. Catal. A: Chem., 284 (1-2), 155–160.
[25] Essalhi, Z., Hartiti, B., Lfakir, A., Siadat, M., and Thevenin, P., 2016, Optical properties of TiO2 thin films prepared by sol gel method, J. Mater. Environ. Sci., 7 (4), 1328–1333.
[26] Zhang, H., Chen, J., and Guo, H., 2011, Efficient near-infrared quantum cutting by Ce3+-Yb3+ couple in GdBO3 phosphors, J. Rare Earths, 29 (9), 822–825.
[27] Reszczynska, J., Esteban, D.A., Gazda, M., and Zaleska, A., 2014, Pr-doped TiO2. The effect of metal content on photocatalytic activity, Physicochem. Probl. Miner. Process., 50 (2), 515–524.
[28] Kim, H.S., Li, Y.B., and Lee, S.W., 2006, Nd3+-doped TiO2 nanoparticles prepared by sol-hydrothermal process, Mater. Sci. Forum, 510-511, 122–125.
[29] Li, W., Wang, Y., Lin, H., Shah, S.I., Huang, C.P., Doren, D.J., Rykov, S.A., Chen, J.G., and Barteau, M.A., 2003, Band gap tailoring of Nd3+-doped TiO2 nanoparticles, Appl. Phys. Lett., 83 (20), 4143–4145.
[30] Antić, Ž., Krsmanović, R.M., Nikolić, M.G., Marinović-Cincović, M., Mitrić, M., Polizzi, S., and Dramićanin, M.D., 2012, Multisite luminescence of rare earth doped TiO2 anatase nanoparticles, Mater. Chem. Phys., 135 (2-3), 1064–1069.
[31] Chen, X., and Luo, W., 2010, Optical spectroscopy of rare earth ion-doped TiO2 nanophosphors, J. Nanosci. Nanotechnol., 10 (3), 1482–1494.
[32] Mulwa, W.M., Ouma, C.N.M., Onani, M.O., and Dejene, F.B., 2016, Energetic, electronic and optical properties of lanthanide doped TiO2: An ab initio LDA+U study, J. Solid State Chem., 237, 129–137.
[33] Qianqian, D., Feng, Q., Dan, W., Wei, X., Jianmin, C., Zhiguo, Z., and Wenwu, C., 2011, Quantum cutting mechanism in Tb3+-Yb3+ co-doped oxyfluoride glass, J. Appl. Phys., 110 (11), 113503.
[34] Du, J., Wu, Q., Zhong, S., Gu, X., Liu, J., Guo, H., Zhang, W., Peng, H., and Zou, J., 2015, Effect of hydroxyl groups on hydrophilic and photocatalytic activities of rare earth doped titanium dioxide thin films, J. Rare Earths, 33 (2), 148–153.
[35] Heng, C.L., Wang, T., Su, W.Y., Wu, H.C., Yin, P.G., and Finstad, T.G., 2016, Down-conversion luminescence from (Ce, Yb) co-doped oxygen-rich silicon oxides, J. Appl. Phys., 119 (12), 123105.
[36] van der Kolk, E., Ten Kate, O.M., Wiegman, J.W., Biner, D., and Krämer, K.W., 2011, Enhanced 1G4 emission in NaLaF4: Pr3+, Yb3+ and charge transfer in NaLaF4: Ce3+, Yb3+ studied by Fourier transform luminescence spectroscopy, Opt. Mater., 33 (7), 1024–1027.
[37] Liu, Z., Li, J., Yang, L., Chen, Q., Chu, Y., and Dai, N., 2014, Efficient near infrared quantum cutting in Ce3+- Yb3+codoped glass for solar photovoltaic, Sol. Energy Mater. Sol. Cells, 122, 46–50.
[38] Chen, D., Wang, Y., Yu, Y., Huang, P., and Weng, F., 2008, Quantum cutting down conversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses, J. Appl. Phys., 104 (11), 116105.
[39] Haque, F.Z., Nandanwar, R., and Singh, P., 2017, Evaluating photodegradation properties of anatase and rutile TiO2 nanoparticles for organic compounds, Optik, 128, 191–200.
[40] Li, W., Liang, R., Hu, A., Huang, Z., and Zhou, Y.N., 2014, Generation of oxygen vacancies in visible light activated one- dimensional iodine TiO2 photocatalysts, RSC Adv., 4 (70), 36959–36966.
[41] Binas, V.D., Sambani, K., Maggos, T., Katsanaki, A., and Kiriakidis, G., 2012, Synthesis and photocatalytic activity of Mn-doped TiO2 nanostructured powders under UV and visible light, Appl. Catal., B, 113-114, 79–86.
[42] Meddouri, M., Hammiche, L., Slimi, O., Djouadi, D., and Chelouche, A., 2016, Effect of cerium on structural and optical properties of ZnO aerogel synthesized in supercritical methanol, Mater. Sci. Poland, 34 (3), 659–664.
[43] Tong, T., Zhang, J., Tian, B., Chen, E., and He, D., 2008, Preparation and characterization of anatase TiO2 microspheres with porous frameworks via controlled hydrolysis of titanium alkoxide followed by hydrothermal treatment, Mater. Lett., 62 (17-18), 2970–2972.
[44] Zhou, L., Deng, J., Zhao, Y., Liu, W., An, L., and Chen, F., 2009, Preparation and characterization of N-I co-doped nanocrystal anatase TiO2 with enhanced photocatalytic activity under visible-light irradiation, Mater. Chem. Phys., 117 (2-3), 522–529.
[45] Yodyingyong, S., Sae-Kung, C., Panijpan, B., Triampo, W., and Bull, D.T., 2011, Physicochemical properties of nanoparticles titania from alcohol burner calcinations, Bull. Chem. Soc. Ethiop., 25 (2), 263–272.

Article Metrics


Copyright (c) 2019 Indonesian Journal of Chemistry

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.