Extraction of Phytosterol Concentration in Different Legume Pods by Using Microwave-Assisted Hydrodistillation


Noormazlinah Noormazlinah(1*), Norlaili Hashim(2), Abdurahman Hamid Nour(3), Mimi Sakinah Abdul Munaim(4), Maria Pilar Almajano(5), Nurul Bahirah(6)

(1) Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang, Malaysia
(2) Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang, Malaysia
(3) Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang, Malaysia
(4) Faculty of Engineering Technology, Universiti Malaysia Pahang, Pahang, Malaysia, Lebuhraya Tun Razak, 26300 Gambang, Pahang, Malaysia
(5) Department of Chemical Engineering, Technical University of Catalonia, Avigunda Diagonal 647, Barcelona 08028, Spain
(6) Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang, Malaysia
(*) Corresponding Author


The traditional ways in the extraction of bioactive compounds using conventional methods are disadvantageous from both economic and environmental perspectives. In this, the potential of microwave-assisted hydrodistillation conditions for extraction of phytosterol from legume pods was investigated. Salkowski test performed on the legume pod has shown the reddish brown in all sample which confirmed the presence of phytosterol qualitatively. Liebermann-Burchard procedure and ultraviolet-visible spectroscopy (UV-Vis) apparatus were used to study the concentration of phytosterol at different extraction parameters which are temperature (25–80 °C), solvent concentration (50–100% v/v), irradiation time (1–10 min) and microwave power (400–800 W). The optimal conditions for highest yield of extract (0.219 mg/L) were obtained at a microwave power of 600 W, the irradiation time of 6 min, and ethanol concentration of 75% v/v. Results obtained in this study have shown the capability of microwave-assisted hydrodistillation in the extraction of phytosterol from legume pod. Further works are nevertheless required to provide a deeper understanding of the mechanisms involved to facilitate the development of an optimum system applicable to the industry.


phytosterol; microwave assisted extraction; one-factor-at-a-time; Salkowski test

Full Text:

Full Text PDF


[1] Jones, P.J., and AbuMweis, S.S., 2009, Phytosterols as functional food ingredients: linkages to cardiovascular disease and cancer, Curr. Opin. Clin. Nutr. Metab. Care, 12 (2), 147–151.

[2] Awad, A.B., Chen, Y.C., Fink, C.S., and Hennessey, T., 1996, Beta-sitosterol inhibits HT-29 human colon cancer cell growth and alters membrane lipids, Anticancer Res., 16 (5A), 2797–2804.

[3] Yu, S., Hongkun, X., Chenghai, L., Chai, L., Xiaolin, S., and Xianzhe, Z., 2016, Comparison of microwave assisted extraction with hot reflux extraction in acquirement and degradation of anthocyanin from powdered blueberry, Int. J. Agric. Biol. Eng., 9 (6), 186–100.

[4] Baskar, A.A., Ignacimuthu, S., Paulraj, G.M., and Al-Numair, K.S., 2010, Chemopreventive potential of beta-sitosterol in experimental colon cancer model - An in vitro and in vivo Study, BMC Complement. Altern. Med., 10, 24.

[5] Gupta, R., Sharma, A.K., Dobhal, M.P., Sharma, M.C., and Gupta, R.S., 2011, Antidiabetic and antioxidant potential of β-sitosterol in streptozotocin-induced experimental hyperglycemia, J. Diabetes, 3 (1), 29–37.

[6] Gan, C.Y., Manaf, N.A., and Latiff, A.A., 2010, Optimization of alcohol insoluble polysaccharides (AIPS) extraction from the Parkia speciosa pod using response surface methodology (RSM), Carbohydr. Polym., 79 (4), 825–831.

[7] Gan, C.Y., and Latiff, A.A., 2011, Antioxidant Parkia speciosa pod powder as potential functional flour in food application: Physicochemical properties’ characterization, Food Hydrocolloids, 25 (5), 1174–1180.

[8] Sulaiman, I.S.C., Basri, M., Masoumi, H.R.F., Chee, W.J., Ashari, S.E., and Ismail, M., 2017, Effects of temperature, time, and solvent ratio on the extraction of phenolic compounds and the anti-radical activity of Clinacanthus nutans Lindau leaves by response surface methodology, Chem. Cent. J., 11 (1), 54.

[9] Chan, C.H., Yusoff, R., Ngoh, G.C., and Kung, F.W., 2011, Microwave-assisted extractions of active ingredients from plants, J. Chromatogr. A, 1218 (37), 6213–6225.

[10] Garofulić, I.E., Dragović-Uzelac, V., Jambrak, A.R., and Jukić, M., 2013, The effect of microwave-assisted extraction on the isolation of anthocyanins and phenolic acids from sour cherry Marasca (Prunus cerasus var. Marasca), J. Food Eng., 117 (4), 437–442.

[11] Deo, S., Janghel, A., Raut, P., Bhosle, D., Verma, C., Kumar, S.S., Agrawal, M., Amit, N., Sharma, M., Giri, T., Tripathi, D.K., Ajazuddin, Alexander, A., 2015, Emerging microwave-assisted extraction (MAE) techniques as an innovative green technologies for the effective extraction of the active phytopharmaceuticals, Res. J. Pharm. Technol., 8 (5), 655–666.

[12] Xiao, W., Han, L., and Shi, B., 2008, Microwave-assisted extraction of flavonoids from Radix astragali, Sep. Purif. Technol., 62 (3), 614–618.

[13] Zygmunt, B., and Namieśnik, J., 2003, Preparation of samples of plant material for chromatographic analysis, J. Chromatogr. Sci., 41 (3), 109–116.

[14] Harborne, J.B., 1998, Phytochemical Methods: A Guide to Modern Technique of Plants Analysis, 3rd ed., Chapman and Hall, London, 129–138, 302.

[15] Araújo, L.B.D.C., Silva, S.L., Galvão, M.A.M., Ferreira, M.R.A., Araújo, E.L., Randau, K.P., and Soares, L.A.L., 2013, Total phytosterol content in drug materials and extracts from roots of Acanthospermum hispidium by UV-VIS spectrophotometry, Rev. Bras. Farmacogn., 23 (5), 736–742.

[16] Rizal, M., Yusransyah, Y., and Stiani, S.N., 2016, Uji aktivitas antidiare ekstrak etanol 70% kulit buah jengkol (Archidendron pauciflorum (Benth.) I.C.Nielsen) terhadap mencit jantan yang diinduksi Oleum ricini, Jurnal Ilmiah Manuntung, 2 (2), 131-136.

[17] Shantabi, L., Jagetia, G.C., Vabeiryureilai, M., Lalrinzuali K., 2014, Phytochemical screening of certain medicinal plants of Mizoram, India and their folklore use, J. Biodivers. Bioprospect. Dev., 2 (1), 136.

[18] Satyadev, A., Murthy, V., and Saroja, R., 2015, Phytochemical screening and antitubercular efficacy of leaf extracts of Leucaena leucocephala, IAJPR, 5 (3), 1023–1029.

[19] Ko, H.J., Ang, L.H., and Ng, L.T., 2013, Antioxidant activities and polyphenolic constituents of bitter bean Parkia speciosa, Int. J. Food Prop., 17 (9), 1977–1986.

[20] Wei, D., Wang, L., Liu, C., and Wang. B., 2010, β-sitosterol solubility in selected organic solvents, J. Chem. Eng. Data, 55 (8), 2917–2919.

[21] Brieskorn, C.H., and Hofmann, H., 1964, Beitrag zum chemismus der farbreaktion nach Liebermann-Burchard, Arch. Pharm., 297, 577–588.

[22] Hemwimon, S., Pavasant, P., and Shotipruk, A., 2007, Microwave-assisted extraction of antioxidative anthraquinones from roots of Morinda citrifolia, Sep. Purif. Technol., 54 (1), 44–50.

[23] Oliveira, C., Nasr, A., Brindle, M., and Wales, P.W., 2012, Ethanol locks to prevent catheter-related bloodstream infections in parenteral nutrition: A meta-analysis, Pediatrics, 129 (2), 318–329.

[24] Wang, L., and Weller, C.L., 2006, Recent advances in extraction of nutraceuticals from plants, Trends Food Sci Technol., 17 (6), 300–312.

[25] von Holtz, R.L., Fink, C.S., and Awad, A.B., 1998, β-Sitosterol activates the sphingomyelin cycle and induces apoptosis in LNCaP human prostate cancer cells, Nutr. Cancer, 32 (1), 8–12.

[26] Sato, T., and Buchner, R., 2004, Dielectric relaxation processes in ethanol/water mixtures, J. Phys. Chem. A, 108 (23), 5007–5015.

[27] Boeing, J.S., Barizão, É.O., e Silva, B.C., Montanher, P.F., de Cinque Almeida, V., and Visentainer, J.V., 2014, Evaluation of solvent effect on the extraction of phenolic compounds and antioxidant capacities from the berries: Application of principal component analysis, Chem. Cent. J., 8 (1), 48.

[28] Ren, Y., Chen, Y., Hu, B., Wu, H., Lai, F., and Li, X., 2015, Microwave-assisted extraction and a new determination method for total steroid saponins from Dioscorea zingiberensis C.H. Wright, Steroids, 104, 145–152.

[29] Lovrić, V., Putnik, P., Kovačević, D.B., Jukić, M., and Dragović-Uzelac, V., 2017, Effect of microwave-assisted extraction on the phenolic compounds and antioxidant capacity of blackthorn flowers, Food Technol. Biotechnol., 55 (2), 243–250.

[30] Dunford, N.T., Irmak, S., and Jonnala, R., 2009, Effect of the solvent type and temperature on phytosterol contents and composition of wheat straw, bran, and germ extract, J. Agric. Food Chem., 57 (22), 10608–10611.

[31] Salomon, S., Sevilla, I., Betancourt, R., Romero, A., Nuevas-Paz, L., and Acosta-Esquijarosa, J., 2014, Extraction of mangiferin from Mangifera indica L. leaves using microwave-assisted technique, Emir. J. Food Agric., 26 (7), 616–622.

[32] Shi, J., Yu, J., Pohorly, J.E., and Kakuda, Y., 2003, Polyphenolics in grape seeds-biochemistry and functionality, J. Med. Food, 6 (4), 291–299.

[33] Chirinos, R., Rogez, H., Campos, D., Pedreschi, R., and Larondelle, Y., 2007, Optimization of extraction conditions of antioxidant phenolic compounds from mashua (Tropaeolum tuberosum Ruíz and Pavón) tubers, Sep. Purif. Technol., 55 (2), 217–225.

[34] Khoddami, A., Wilkes, M.A., and Roberts, T.H., 2013, Techniques for analysis of plant phenolic compounds, Molecules, 18 (2), 2328–2375.

[35] Uddin, M.S., Sarker, M.Z., Ferdosh, S., Akanda, M.J., Easmin, M.S., Shamsudina, S.H., and Bin Yunus, K., 2015, Phytosterols and their extraction from various plant matrices using supercritical carbon dioxide: A review, J. Sci. Food Agric., 95 (7), 1385–1394.

[36] Ghasemzadeh, A., Jaafar, H.Z.E., Rahmat, A., and Swamy, M.K., 2017, Optimization of microwave-assisted extraction of zerumbone from Zingiber zerumbet L. rhizome and evaluation of antiproliferative activity of optimized extracts, Chem. Cent. J., 11, 5.

DOI: https://doi.org/10.22146/ijc.40865

Article Metrics

Abstract views : 376 | views : 307

Copyright (c) 2019 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Indonesian Journal of Chemisty (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Analytics View The Statistics of Indones. J. Chem.