Separation of Pb(II) Ion with Tetraacetic Acid Derivative of Calix[4]arene by Using Droplet-based Microreactor System
Yehezkiel Steven Kurniawan(1), Mizuki Ryu(2), Ramachandra Rao Sathuluri(3), Wataru Iwasaki(4), Shintaro Morisada(5), Hidetaka Kawakita(6), Keisuke Ohto(7*), Masatoshi Maeki(8), Masaya Miyazaki(9), Jumina Jumina(10)
(1) Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, 1-Honjo, Saga 840-8502, Japan
(2) Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, 1-Honjo, Saga 840-8502, Japan
(3) Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, 1-Honjo, Saga 840-8502, Japan
(4) Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology, 807-1 Shuku, Tosu, Saga 841-0052, Japan
(5) Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, 1-Honjo, Saga 840-8502, Japan
(6) Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, 1-Honjo, Saga 840-8502, Japan
(7) Department of Chemistry and Applied Chemistry, Saga University
(8) Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita, Sapporo 060-0808, Japan
(9) Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology, 807-1 Shuku, Tosu, Saga 841-0052, Japan
(10) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(*) Corresponding Author
Abstract
Keywords
Full Text:
Full Text PDFReferences
[1] Pereira, C.J., 1999, Environmental friendly processes, Chem. Eng. Sci., 54 (13-14), 1959–1973.
[2] Anastas, P.T., 2007, Introduction: Green chemistry, Chem. Rev., 107 (6), 2167–2168.
[3] Kurniawan, Y.S., Ramanda, Y., Thomas, K., Hendra, and Wahyuningsih, T.D., 2017, Synthesis of 1,4-dioxaspiro[4.4] and 1,4-dioxaspiro[4.5] novel compounds from oleic acid as potential biolubricant, Indones. J. Chem., 17 (2), 301–308.
[4] Wahyuningsih, T.D. and Kurniawan, Y.S., 2017, Green synthesis of some novel dioxolane compounds from Indonesian essential oils as potential biogreases, AIP Conf. Proc., 1823 (1), 020081.
[5] Kurniawan, Y.S., Anwar, M., and Wahyuningsih, T.D., 2017, New lubricant from used cooking oil: Cyclic ketal of ethyl 9,10-dihydroxyoctadecanoate, Mater. Sci. Forum, 901, 135–141.
[6] Gadipelly, C., Pérez-González, A., Yadav, G.D., Ortiz, I., Ibáñez, R., Rathod, V.K., and Marathe, K.V., 2014, Pharmaceutical industry wastewater: Review of the technologies for water treatment and reuse, Ind. Eng. Chem. Res., 53 (29), 11571–11592.
[7] Carolin, C.F., Kumar, P.S., Saravanan, A., Joshiba, G.J., and Naushad, M., 2017, Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review, J. Environ. Chem. Eng., 5 (3), 2782–2799.
[8] Cicero, C.E., Mostile, G., Vasta, R., Rapisarda, V., Signorelli, S.S., Ferrante, M., Zappia, M., and Nicoletti, A., 2017, Metals and neurodegenerative diseases. A systematic review, Environ. Res., 159, 82-94.
[9] Manahan, S., 2017, Environmental Chemistry, 10th ed., CRC Press, New York, 138.
[10] Handayani, D.S., Jumina, Siswanta, D., Mustofa, Ohto, K., and Kawakita, H., 2011, Adsorption of Pb(II), Cd(II) and Cr(III) from aqueous solution by poly-5-allyl-calix[4]arene tetra carboxylic acid, Indones. J. Chem., 11 (2), 191–195.
[11] Masykur, A., Santosa, S.J., Siswanta, D., and Jumina, 2014, Synthesis of Pb(II) imprinted carboxymethyl chitosan and the application as sorbent for Pb(II) ion, Indones. J. Chem., 14 (2), 152–159.
[12] Utomo, S.B., Jumina, Siswanta, D., and Mustofa, 2012, Kinetics and equilibrium model of Pb(II) and Cd(II) adsorption onto tetrakis-thiomethyl-C-4-methoxyphenylcalix[4] resorcinarene, Indones. J. Chem., 12 (1), 49–56.
[13] Utomo, S.B., Jumina, and Wahyuningsih, T.D., 2009, The adsorption of Pb(II) and Cr(III) by polypropylcalix[4]arene polymer, Indones. J. Chem., 9 (3), 437–444.
[14] Ohto, K., 2010, Review of the extraction behavior of metal cations with calixarene derivatives, Solvent Extr. Res. Dev., 17, 1–18.
[15] Ohto, K., Fujimoto, Y., and Inoue, K., 1999, Stepwise extraction of two lead ions with a single molecule of calix[4]arene tetracarboxylic acid, Anal. Chim. Acta, 387 (1), 61–69.
[16] Jensen, K.F., 2017, Flow chemistry-microreaction technology comes of age, AIChE J., 63 (3), 858–869.
[17] Ohto, K., Kim, J.Y., Morisada, S., Maeki, M., Yamashita, K., and Miyazaki, M., 2014, Microreactor extraction system with macrocyclic host compounds for rare metal recovery, Int. J. Soc. Mater. Eng. Resour., 20 (1), 92–96.
[18] Maeki, M., Hatanaka, Y., Yamashita, K., Miyazaki, M., and Ohto, K., 2014, Solvent extraction behavior of metal ions with calix[4]arene derivatives by using a microreactor, Solvent Extr. Res. Dev., 21 (1), 77–82.
[19] Wang, K., and Luo, G., 2017, Microflow extraction: A review of recent development, Chem. Eng. Sci., 169, 18–33.
[20] Busa, L.S.A., Mohammadi, S., Maeki, M., Ishida, A., Tani, H., and Tokeshi, M., 2016, Advances in microfluidic paper-based analytical devices for food and water analysis, Micromachines, 7 (5), 86.
[21] Maeki, M., Yamazaki, S., Pawate, A.S., Ishida, A., Tani, H., Yamashita, K., Sugishima. M., Watanabe, M., Tokeshi, M., Kenis, P.J.A., and Miyazaki, M., 2016, A microfluidic-based protein crystallization method in 10 micrometer-sized crystallization space, Cryst EngComm., 18, 7722–7727.
[22] Russo, D., Somma, I.D., Marotta, R., Tomaiuolo, G., Andreozzi, R., Guido, S., and Lapkin, A.A., 2017, Intensification of nitrobenzaldehydes synthesis from benzyl alcohol in a microreactor, Org. Process Rev. Dev., 21 (3), 357–364.
[23] Ciceri, D., Perera, J.M., and Stevens, G.W., 2014, The use of microfluidic devices in solvent extraction, J. Chem. Technol. Biotechnol., 89 (6), 771–786.
[24] Sathuluri, R.R., Kurniawan, Y.S., Kim, J.Y., Maeki, M., Iwasaki, W., Morisada, S., Kawakita, H., Miyazaki, M., and Ohto, K., 2018, Droplet-based microreactor system for stepwise recovery of precious metal ions from real metal waste with calix[4]arene derivatives, Sep. Sci. Technol., 53 (8), 1261–1272.
[25] Ohto, K., Yano, M., Inoue, K., Yamamoto, T., Goto, M., Nakashio, F., Shinkai, S., and Nagasaki, T., 1995, Solvent extraction of trivalent rare earth metal ions with carboxylate derivatives of calix[4]arenes, Anal. Sci., 11 (6), 893–902.
[26] Jiang, F., Yin, S., Srinivasakannan, C., Li, S., and Peng, J., 2018, Separation of lanthanum and cerium from chloride medium in presence of complexing agent along with EHEHPA (P507) in a serpentine microreactor, Chem. Eng. J., 334, 2208–2214.
[27] Zhang, L.H., Ping, J.H., Ju, S.H., Zhang, L.B., Dai, L.Q., and Liu, N.S., 2014, Microfluidic solvent extraction and separation of cobalt and nickel, RSC Adv., 4 (31), 16081–16086.
[28] Kurniawan, Y.S., Sathuluri, R.R., Iwasaki, W., Morisada, S., Kawakita, H., Ohto, K., Miyazaki, M., and Jumina, 2018, Microfluidic reactor for Pb(II) ion extraction and removal with an amide derivative of calix[4]arene supported by spectroscopic studies, Microchem. J., 142, 377–384.
DOI: https://doi.org/10.22146/ijc.34387
Article Metrics
Abstract views : 4574 | views : 2816Copyright (c) 2018 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.