Short Time Synthesis of Titania Nanotubes: Effect of Pre-Mixing Prior Hydrothermal

https://doi.org/10.22146/ijc.26777

Indriana Kartini(1*), Ira Nur Arba’atul Jannah(2), Fitri Rizki Amalia(3), Salim Mustofa(4), Eko Sri Kunarti(5), Respati Tri Swasono(6)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(2) Functional Coating Materials Research Group, Department of Chemistry, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(4) Center for Science and Technology of Advanced Materials, BATAN, Kawasan Puspiptek, Serpong, Tangerang 15314, Indonesia
(5) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(6) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(*) Corresponding Author

Abstract


The effect of pre-mixing by mechanical stirring before hydrothermal and hydrothermal time on the crystalline phases and morphology of titania has been studied. It was shown that nanotubes titania can be obtained after 5 h hydrothermal at 150 °C. The XRD patterns and Raman spectra of the produced powders showed the existence of anatase and titanate crystalline phases. At the longest stirring, TiO2 (B) was observed. High textural coefficient for [200] plane of anatase (TC200) confirmed oriented growth of one-dimensional anatase along [200]. All powders resulted at various stirring time were nanotubes, as confirmed by Transmission Electron Microscope (TEM). It was found that the longer the stirring, the higher the surface area of the nanotubes. All powders showed type-IV isotherm for nitrogen gas adsorption/desorption, indicating the existence of mesoporous materials. However, long hydrothermal induced the nanospheres formation, hence reducing the surface area. The band-gap of the resulted titania nanotubes were ranging from 3.11–3.16 eV. The photocatalytic performance toward the degradation of methylene blue of the titania nanotubes was higher (~50%) compared to the bulk TiO2 (~5%) under visible-light and was comparable under UV-light (~60%). These results pave a way of producing visible-sensitive TiO2 photocatalyst by altering the morphology.

Keywords


nanotube; titanium dioxide; hydrothermal; stirring; photocatalyst; visible-sensitive

Full Text:

Full Text PDF


References

[1] Fahim, N.F., and Sekino, T., 2009, A novel method for synthesis of titania nanotube powders using rapid breakdown anodization, Chem. Mater., 21 (9), 1967–1979.

[2] Wang, Y., Zhang, R., Li, J., Li, L., and Lin, S., 2014, First-principles study on transition metal-doped anatase TiO2, Nanoscale Res. Lett., 9 (1), 46.

[3] Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., and Niihara, K., 1998, Formation of titanium oxide nanotube, Langmuir, 14 (12), 3160–3163.

[4] Vu, T.H.T., Au, H.T., Tran, L.T., Nguyen, T.M.T., Tran, T.T.T., Pham, M.T., Do, M.H., and Nguyen, D.L., 2014, Synthesis of titanium dioxide nanotubes via one-step dynamic hydrothermal process, J. Mater. Sci., 49 (16), 5617–5625.

[5] Li, Q., and Shang, J.K., 2009, Self-organized nitrogen and fluorine co-doped titanium oxide nanotube arrays with enhanced visible light photocatalytic performance, Environ. Sci. Technol., 43 (23), 8923–8929.

[6] Kartini, I., Evana, Sutarno, and Chotimah, 2014, sol-gel derived ZnO nanorod templated TiO2 nanotube synthesis for natural dye-sensitized solar cell, Adv. Mater. Res., 896, 485–488.

[7] Martín, C., Ziółek, M., and Douhal, A., 2016, Ultrafast and fast charge separation processes in real dye-sensitized solar cells, J. Photochem. Photobiol., C, 26, 1–30.

[8] Zhang, Z., Zhang, L., Hedhili, M.N., Zhang, H., and Wang, P., 2013, Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting, Nano Lett., 13 (1), 14–20.

[9] Lim, Y.W.L., Tang, Y., Cheng, Y.H., and Chen, Z., 2010, Morphology, crystal structure and adsorption performance of hydrothermally synthesized titania and titanate nanostructures, Nanoscale, 2 (12), 2751–2757.

[10] Liu, N., Chen, X., Zhang, J., and Schwank, J.W., 2014, A review on TiO2-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications, Catal. Today, 225, 34–51.

[11] Kartini, I., Khairani, I.Y., Chotimah, Mustofa, S., Santosa, S.J., and Wang, L.Z., 2017, The effect of alkaline ratios of NaOH to NH3 on the formation of nanostructured titania, Mater. Sci. Forum, 886, 42–47.

[12] Ma, Y., Lin, Y., Xiao, X., Zhou, X., and Li, X., 2006, Sonication–hydrothermal combination technique for the synthesis of titanate nanotubes from commercially available precursors, Mater. Res. Bull., 41 (2), 237–243.

[13] Mohabansi, N.P., Patil, V.B., and Yenkie, N., 2011, A comparative study on photo degradation of methylene blue dye effluent by advanced oxidation process by using TiO2/ZnO photo catalyst, Rasayan J. Chem., 4 (4), 814–819.

[14] Takashiri, M., Kai, S., Wada, K., Takasugi, S., and Tomita, K., 2016, Role of stirring assist during solvothermal synthesis for preparing single-crystal bismuth telluride hexagonal nanoplates, Mater. Chem. Phys., 173, 213–218.

[15] Caglar, M., Caglar, Y., and Ilican, S., 2006, The determination of the thickness and optical constants of the ZnO crystalline thin film by using envelope method, J. Optoelectron. Adv. Mater., 8 (4), 1410–1413.

[16] Kim, S.J., Yun, Y.U., Oh, H.J., Hong, S.H., Roberts, C.A., Routray, K., and Wachs, I.E., 2010, Characterization of hydrothermally prepared titanate nanotube powders by ambient and in situ Raman spectroscopy, J. Phys. Chem. Lett., 1 (1), 130–135.

[17] Ai, Q., Yang, D., Li, Y., Shi, J., Wang, X., and Jiang, Z., 2014, Highly efficient covalent immobilization of catalase on titanate nanotubes, Biochem. Eng. J., 83, 8–15.

[18] Hildebrandt, N., Spillmann, C.M., Algar, W.R., Pons, T., Stewart, M.H., Oh, E., Susumu, K., Díaz, S.A., Delehanty, J.B., and Medintz, I.L., 2017, Energy transfer with semiconductor quantum dot bioconjugates: a versatile platform for biosensing, energy harvesting, and other developing applications, Chem. Rev., 117 (2), 536–711.

[19] Kartini, I., Menzies, D., Blake, D., da Costa, J.C.D., Meredith, P., Riches, J.D., and Lu, G.Q., 2004, Hydrothermal seeded synthesis of mesoporous titania for application in dye-sensitised solar cells (DSSCs), J. Mater. Chem., 14 (19), 2917–2921.

[20] Kubacka, A., Fernández-García, M., and Colón, G., 2012, Advanced nanoarchitectures for solar photocatalytic applications, Chem. Rev., 112 (3), 1555–1614.

[21] Tomita, K., Kobayashi, M., Petrykin, V., Yin, S., Sato, T., Yoshimura, M., and Kakihana, M., 2008, Hydrothermal synthesis of TiO2 nano-particles using novel water-soluble titanium complexes, J. Mater. Sci., 43 (7), 2217–2221.

[22] Lee, H.M., So, W.W., Baeg, J.O., Kong, K.J., and Moon, S.J., 2012, Preparation of visible-light active TiO2 nanotubes by solution method, Korean Chem. Eng. Res., 50 (1), 182–185.

[23] Kurian, S., Seo, H., and Jeon, H., 2013, Significant enhancement in visible light absorption of TiO2 nanotube arrays by surface band gap tuning, J. Phys. Chem. C, 117 (33), 16811–16819.

[24] Jannah, I.N.A., 2017, Pengaruh Pengadukan dan Sonikasi Sebelum Hidrotermal terhadap Pembentukan TiO2 Nanotube Anatase dan Kajian Fotoaktivitasnya, Undergraduate Thesis, Department of Chemistry, Universitas Gadjah Mada, Yogyakarta.



DOI: https://doi.org/10.22146/ijc.26777

Article Metrics

Abstract views : 3378 | views : 2685


Copyright (c) 2018 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.