Improvement of Cycling Performance of Na2/3Co2/3Mn1/3O2 Cathode by PEDOT/PSS Surface Coating for Na Ion Batteries

https://doi.org/10.22146/ijc.24893

Yatim Lailun Ni’mah(1*), Ju Hsiang Cheng(2), Ming Yao Cheng(3), Wei Nien Su(4), Bing Joe Hwang(5)

(1) Department of Chemistry, Institut Teknologi Sepuluh Nopember
(2) Department of Chemical Engineering, National Taiwan University of Science and Technology
(3) Department of Chemical Engineering, National Taiwan University of Science and Technology
(4) Department of Chemical Engineering, National Taiwan University of Science and Technology
(5) Department of Chemical Engineering, National Taiwan University of Science and Technology National Synchrotron Radiation Research Center
(*) Corresponding Author

Abstract


The surface-modified Na2/3Co2/3Mn1/3O2 is coated with a conductive Poly (3,4-Ethylene dioxy thiophene)-poly (styrene sulfonate) (PEDOT/PSS) polymer, and their resulting electrochemical properties were investigated as Na-ion battery cathode. The surface-modified Na2/3Co2/3Mn1/3O2 cathode material exhibits a high discharge capacity and good rate capability due to enhanced electron transport by surface PEDOT/PSS. The presence of PEDOT/PSS surface layer suppresses the growth of a resistive layer, while the dissolution of transition metals of the active cathode materials is inhibited as well. The resulting surface-modified Na2/3Co2/3Mn1/3O2 shows superior cycling performance, which is much stable than the pristine one as being the Na-ion battery cathode.

Keywords


Sodium ion battery; PEDOT/PSS; cathode; surface coating

Full Text:

Full Text PDF


References

[1] Armand, M., and Tarascon, J.M., 2008, Building better batteries, Nature, 451 (7179), 652–657.

[2] Zu, C.X., and Li, H., 2011, Thermodynamic analysis on energy densities of batteries, Energy Environ. Sci., 4 (8), 2614–2624.

[3] Yang, Z., Zhang, J., Kintner-Meyer, M.C.W., Lu, X., Choi, D., Lemmon, J.P., and Liu, J., 2011, Electrochemical energy storage for green grid, Chem. Rev., 111 (5), 3577–3613.

[4] Palomares, V., Serras, P., Villaluenga, I., Hueso, K.B., Carretero-González, J., and Rojo, T., 2012, Na-ion batteries, recent advances and present challenges to become low cost energy storage systems, Energy Environ. Sci., 5, 5884–5901.

[5] Wang, L., Lu, Y., Liu, J., Xu, M., Cheng, J., Zhang, D., and Goodenough, J.B., 2013, A superior low-cost cathode for a Na-ion battery, Angew. Chem, Int. Ed., 52, 1964–1967.

[6] Berthelot, R., Carlier, D., and Delmas, C., 2011, Electrochemical investigation of P2-NaxCoO2 phase diagram, Nat. Mater., 10 (1), 74–80.

[7] Cao, Y., Xiao, L., Wang, W., Choi, D., Nie, Z., Yu, J., Saraf, L.V., Yang, Z., and Liu, J., 2011, Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life, Adv. Mater., 23 (28), 3155–3160.

[8] Yamada, Y., Doi, T., Tanaka, I., Okada, S., and Yamaki, J., 2011, Liquid-phase synthesis of highly dispersed NaFeF3 particles and their electrochemical properties for sodium-ion batteries, J. Power Sources, 196 (10), 4837–4841.

[9] Lee, K.T., Ramesh, T.N., Nan, F., Botton, G., and Nazar, L.F., 2011, Topochemical synthesis of sodium metal phosphate olivines for sodium-ion batteries, Chem. Mater., 23 (16), 3593–3600.

[10] Sauvage, F., Quarez, E., Tarascon, J.M., and Baudrin, E., 2006, Crystal structure and electrochemical properties vs. Na+ of the sodium fluorophosphate Na1.5VOPO4F0.5, Solid State Sci., 8 (10),1215–1221.

[11] Kawabe, Y., Yabuuchi, N., Kajiyama, M., Fukuhara, N., Inamasu, T., Okuyama, R., Nakai, I., and Komaba, S., 2011, Synthesis and electrode performance of carbon coated Na2FePO4F for rechargeable Na batteries, Electrochem. Commun., 13 (11), 1225–1228.

[12] Komaba, S., Nakayama, T., Ogata, A., Shimizu, T., Takei, C., Takada, S., Hokura, A., and Nakai, I., 2009, Electrochemically reversible sodium intercalation of layered NaNi0.5Mn0.5O2 and NaCrO2, ECS Trans., 16 (42), 43–55.

[13] Komaba, S., Murata, W., Ishikawa, T., Yabuuchi, N., Ozeki, T., Nakayama, T., Ogata, A., Gotoh, K., and Fujiwara, K., 2011, Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries, Adv. Funct. Mater., 21 (20), 3859–3867.

[14] Wenzel, S., Hara, T., Janek, J., and Adelhelm, P., 2011, Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies, Energy Environ. Sci., 4, 3342–3345.

[15] Stevens, D.A., and Dahn, J.R., 2000, High capacity anode materials for rechargeable sodium-ion batteries, J. Electrochem. Soc., 147 (4), 1271–1273.

[16] Hamani, D., Ati, M., Tarascon, J.M., and Rozier, P., 2011, NaxVO2 as possible electrode for Na-ion batteries, Electrochem. Commun., 13 (9), 938–941.

[17] Senguttuvan, P., Rousse, G., Seznec, V., Tarascon, J.M., and Palacin, M.R., 2011, Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries, Chem. Mater., 23 (18), 4109–4111.

[18] Park, S.I. Gocheva, I., Okada, S., and Yamaki, J., 2011, Electrochemical properties of NaTi2(PO4)3 anode for rechargeable aqueous sodium-ion batteries, J. Electrochem. Soc., 158 (10), A1067–A1070.

[19] Carlier, D., Cheng, J.H., Berthelot, R., Guignard, M., Yoncheva, M., Stoyanova, R., Hwang, B.J., and Delmas, C., 2011, The P2-Na2/3Co2/3Mn1/3O2 phase: Structure, physical properties and electrochemical behavior as positive electrode in sodium battery, Dalton Trans., 40 (36), 9306–9312.

[20] Jian, Z., Zhao, L., Pan, H., Hu, Y.S., Li, H., Chen, W., and Chen, L., 2012, Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries, Electrochem. Commun., 14 (1), 86–89.

[21] Braconnier, J.J., Delmas, C., Fouassier, C., and Hagenmuller, P., 1980, Comportement electrochimique des phases NaxCoO2, Mater. Res. Bull., 15 (12), 1797–1804.

[22] Delmas, C., Braconnier, J.J., Fouassier, C., and Hagenmuller, P., 1981, Electrochemical intercalation of sodium in NaxCoO2bronzes, Solid State Ionics, 3-4, 165–169.

[23] Terasaki, I., Sasago, Y., and Uchinokura, K., 1997, Large thermoelectric power in NaCo2O4 single crystals, Phys. Rev. B, 56 (20), R12685–R12687.

[24] Takada, K., Sakurai, H., Takayama-Muromachi, E., Izumi, F., Dilanian, R.A., and Sasaki, T., 2003, Superconductivity in two-dimensional CoO2 layers, Nature, 422 (6927), 53–55.

[25] Cho, J., Kim, Y.J., Kim, T.J., and Park, B., 2001, Zero-strain intercalation cathode for rechargeable Li-ion cell, Angew. Chem. Int. Ed., 40 (18), 3367−3369.

[26] Gnanaraj, J.S., Pol, V.G., Gedanken, A., and Aurbach, D., 2003, Improving the high-temperature performance of LiMn2O4 spinel electrodes by coating the active mass with MgO via a sonochemical method, Electrochem. Commun., 5 (11), 940−945.

[27] Chen, Z., Qin, Y., Amine, K., and Sun, Y.K., 2010, Role of surface coating on cathode materials for lithium-ion batteries, J. Mater. Chem., 20, 7606−7612.

[28] Fan, Y., Wang, J., Tang, Z., He, W., and Zhang, J., 2007, Effects of the nanostructured SiO2 coating on the performance of LiNi0.5Mn1.5O4 cathode materials for high-voltage Li-ion batteries, Electrochim. Acta, 52 (11), 3870−3875.

[29] Woo, S.U., Yoon, C.S., Amine, K., Belharouak, I., and Sun, Y.K., 2007, Significant improvement of electrochemical performance of AlF3-coated Li [ Ni0.8Co0.1Mn0.1] O2 cathode materials, J. Electrochem. Soc., 154 (11), A1005−A1009.

[30] Myung, S.T., Amine, K., and Sun, Y.K., 2010, Surface modification of cathode materials from nano- to microscale for rechargeable lithium-ion batteries, J. Mater. Chem., 20, 7074−7095.

[31] Sclar, H., Haik, O., Menachem, T., Grinblat, J., Leifer, N., Meitav, A., Luski, S., and Aurbach, D., 2012, The effect of ZnO and MgO coatings by a sono-chemical method, on the stability of LiMn1.5Ni0.5O4 as a cathode material for 5 V Li-ion batteries, J. Electrochem. Soc., 159 (3), A228−A237.

[32] Arbizzani, C., Mastragostino, M., and Rossi, M., 2002, Preparation and electrochemical characterization of a polymer Li1.03Mn1.97O4/pEDOT composite electrode, Electrochem. Commun., 4 (7), 545−549

[33] Arbizzani, C., Balducci, A., Mastragostino, M., Rossi, M., and Soavi, F., 2003, Li1.01Mn1.97O4 surface modification by poly(3,4-ethylenedioxythiophene), J. Power Sources, 119-121, 695−700.

[34] Wang, G.X., Yang, L., Chen, Y., Wang, J.Z., Bewlay, S., and Liu, H.K., 2005, An investigation of polypyrrole-LiFePO4 composite cathode materials for lithium-ion batteries, Electrochim. Acta, 50 (24), 4649−4654.

[35] Huang, Y.H., Park, K.S., and Goodenough, J.B., 2006, Improving lithium batteries by tethering carbon-coated LiFePO4 to polypyrrole, J. Electrochem. Soc., 153 (12), A2282−A2286.

[36] Her, L.J., Hong, J.L., and Chang, C.C., 2006, Preparation and electrochemical characterizations of poly(3,4-dioxyethylenethiophene)/LiCoO2 composite cathode in lithium-ion battery, J. Power Sources, 157 (1),457−463.

[37] Park, K.S., Schougaard, S.B., and Goodenough, J.B., 2007, Conducting-polymer/iron-redox-couple composite cathodes for lithium secondary batteries, Adv. Mater., 19 (6), 848−851.

[38] Lee, K.S., Sun, Y.K., Noh, J., Song, K.S., and Kim, D.W., 2009, Improvement of high voltage cycling performance and thermal stability of lithium–ion cells by use of a thiophene additive, Electrochem. Commun., 11 (10), 1900−1903.

[39] Fedorková, A., Oriňáková, R., Orinak, A., Talian, I., Heile, A., Wiemhöfer, H.D., Kaniansky, D., and Arlinghaus, H.F., 2010, PPy doped PEG conducting polymer films synthesized on LiFePO4 particles, J. Power Sources, 195, 3907−3912.

[40] Fedorková, A., Oriňáková, R., Orinak, A., Wiemhöfer, H.D., Kaniansky, D., and Winter, M., 2010, Surface treatment of LiFePO4 cathode material with PPy/PEG conductive layer, J. Solid State Electrochem., 14 (12), 2173−2178.

[41] Sinha, N.N., and Munichandraiah, N., 2009, Synthesis and characterization of carbon-coated LiNi1/3Co1/3Mn1/3O2 in a single step by an inverse microemulsion route, ACS Appl. Mater. Interfaces, 1 (6), 1241−1249.

[42] Lepage, D., Michot, C., Liang, G., Gauthier, M., and Schougaard, S.B., 2011, A soft chemistry approach to coating of LiFePO4 with a conducting polymer, Angew. Chem. Int. Ed., 50 (30), 6884−6887.

[43] Zhan, L., Song, Z., Zhang, J., Tang, J., Zhan, H., Zhou, Y., and Zhan, C., 2008, PEDOT: Cathode active material with high specific capacity in novel electrolyte system, Electrochim. Acta, 53 (28), 8319−8323.

[44] Lee, Y.S., Lee, K.S., Sun, Y.K., Lee, Y.M., and Kim, D.W., 2011, Effect of an organic additive on the cycling performance and thermal stability of lithium-ion cells assembled with carbon anode and LiNi1/3Co1/3Mn1/3O2 cathode, J. Power Sources, 196 (16), 6997−7001.

[45] Yao, Y., Liu, N., McDowell, M.T., Pasta, M., and Cui, Y., 2012, Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings, Energy Environ. Sci., 5, 7927−7930.

[46] Zhou, J., and Lubineau, G., 2013, Improving Electrical Conductivity in Polycarbonate Nanocomposites Using Highly Conductive PEDOT/PSS Coated MWCNTs, ACS Appl. Mater. Interfaces, 5 (13), 6189−6200.

[47] Dziewoński, P.M., and Grzeszczuk, M., 2010, Towards TiO2-conducting polymer hybrid materials for lithium ion batteries, Electrochim. Acta, 55 (9), 3336−3347.

[48] Yang, Y., Yu, G., Cha, J.J., Wu, H., Vosgueritchian, M., Yao, Y., Bao, Z., and Cui, Y., 2011, Improving the performance of lithium–sulfur batteries by conductive polymer coating, ACS Nano, 5 (11), 9187−9193.

[49] Ju, S.H., Kang, I.S., Lee, Y.S., Shin, W.K., Kim, S., Shin, K., and Kim, D.W., 2014, Improvement of the cycling performance of LiNi0.6Co0.2Mn0.2O2 cathode active materials by a dual-conductive polymer coating, ACS Appl. Mater.Interfaces, 6 (4), 2546–2552.

[50] Liu, X., Li, H., Li, D., Ishida, M., and Zhou, H., 2013, PEDOT modified LiNi1/3Co1/3Mn1/3O2 with enhanced electrochemical performance for lithium ion batteries, J. Power Sources, 243, 374−380.

[51] Wang, Z., Sun, Y., Chen, L., and Huang, X., 2004, Electrochemical characterization of positive electrode material LiNi1 / 3Co1 / 3Mn1 / 3 O 2 and compatibility with electrolyte for lithium-ion batteries, J. Electrochem. Soc., 151 (6), A914−A921.

[52] Tang, Z., Wang, J., Chen, Q., He, W., Shen, C., Mao, X.X., and Zhang, J., 2007, A novel PEO-based composite polymer electrolyte with absorptive glass mat for Li-ion batteries, Electrochim. Acta, 52 (24), 6638−6643.

[53] Cheng, J.H., Pan, C.J., Lee, J.F., Chen, J.M., Guignard, M., Delmas, C., Carlier, D., and Hwang, B.J., 2014, Simultaneous reduction of Co3+ and Mn4+ in P2-Na2/3Co2/3Mn1/3O2 as evidenced by X-ray absorption spectroscopy during electrochemical sodium intercalation, Chem. Mater., 26 (2), 1219–1225.

[54] Funabiki, A., Inaba, M., and Ogumi, Z., 1997, A.c. impedance analysis of electrochemical lithium intercalation into highly oriented pyrolytic graphite, J. Power Sources, 68 (2), 227−231.

[55] Levi, M.D., Salitra, G., Markovsky, B., Teller, H., Aurbach, D., Heider, U., and Heider, L., 1999, Solid-state electrochemical kinetics of Li-ion intercalation into Li1-xCoO2: Simultaneous application of electroanalytical techniques SSCV, PITT, and EIS, J. Electrochem. Soc., 146 (4), 1279−1289.

[56] Lu, Y., Zhang, S., Li, Y., Xue, L., Xu, G., and Zhang, X., 2014, Preparation and characterization of carbon-coated NaVPO4F as cathode material for rechargeable sodium-ion batteries, J. Power Sources, 247, 770–777.

[57] Shen, W., Wang, C., Liu, H., and Yang, W., 2013, Towards highly stable storage of sodium ions: A Porous Na3V2(PO4)3/C cathode material for sodium-ion batteries, Chem. Eur. J., 19 (43), 14712–14718.



DOI: https://doi.org/10.22146/ijc.24893

Article Metrics

Abstract views : 3672 | views : 3233


Copyright (c) 2017 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.