Optical Sensor for the Determination of Pb2+ Based On Immobilization of Dithizone onto Chitosan-Silica Membrane

https://doi.org/10.22146/ijc.23560

Yuspian Nur(1), Eti Rohaeti(2*), Latifah Kosim Darusman(3)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Darmaga Campus, Kimia Building, Tanjung Street, Bogor 16680
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Darmaga Campus, Kimia Building, Tanjung Street, Bogor 16680
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Darmaga Campus, Kimia Building, Tanjung Street, Bogor 16680 Biopharmaca Research Center, Institute of Research and Community Empowerment, Bogor Agricultural University, Taman Kencana Campus-Bogor
(*) Corresponding Author

Abstract


Optical sensor based on immobilization of dithizone onto chitosan-silica for the determination of Pb2+ has been prepared. The sensor was made of the composite membrane of chitosan and silica in the ratio of volume 2:1. Sol-gel technique has been chosen to prepare the membrane. The fabricated sensor indicated a good selectivity at pH 5 with response time at ± 180 s. Linearity response was obtained with concentration ranged from 0.2 to 1.1 ppm with r2 = 0.9921. The percentage of relative standard deviation (%RSD) on precision and accuracy as recovery percentage (% recovery) were 1.46 and 100.96%, respectively. Limit of detection (LOD) and limit of quantitation (LOQ) were 0.11 and 0.37 ppm, respectively.

Keywords


optical sensor; chitosan-silica composite; dithizone; lead(II) metal

Full Text:

Full Text Pdf


References

[1] Badan Standar Nasional, 2004, Air dan air limbah-Bagian 8: Cara uji timbal (Pb) dengan spektrofotometer serapan atom (SSA)-nyala, SNI 06-6989.8-2004, 1–5.

[2] Chen, W.N., Jiang, S.J., Chen, Y.L., and Sahayam, A.S., 2015, Determination of Pb in lipsticks by flow injection chemical vapor generation isotope dilution inductively coupled plasma mass spectrometry, Microchem. J., 119, 128–132.

[3] Thangavel, S., Dash, K., Dhavile, S.M., and Sahayam, A.C., 2015, Determination of traces of As, B, Bi, Ga, Ge, P, Pb, Sb, Se, Si and Te in high-purity nickel using inductively coupled plasma-optical emission spectrometry (ICP-OES), Talanta, 131, 505–509.

[4] Zhu, L., Xu, L., Huang, B., Jia, N., Tan, L., and Yao S., 2014, Simultaneous determination of Cd(II) and Pb(II) using square wave anodic stripping voltammetry at a gold nanoparticle-graphene-cysteine composite modified bismuth film electrode, Electrochim Acta, 115, 471–477.

[5] Moyo, M., Okonkwo, J.O., and Agyei, N.M., 2014, An amperometric biosensor based on horseradish peroxidase immobilized onto maize tassel-multi-walled carbon nanotubes modified glassy carbon electrode for determination of heavy metal ions in aqueous solution, Enzyme Microb. Technol., 56, 28–34.

[6] Aksuner, N., 2011, Development of a new fluorescent sensor based on a triazolo-thiadiazin derivative immobilized in polyvinyl chloride membrane for sensitive detection of lead(II) ions, Sens. Actuators, B, 157 (1), 162–168.

[7] Zargoosh, K., and Babadi, F.F., 2015, Highly selective and sensitive optical sensor for determination of Pb2+ and Hg2+ ions based on the covalent immobilization of dithizone on agarose membrane, Spectrochim. Acta, Part A, 137, 105–110.

[8] Repo, E., Warchoł, J.K., Bhatnagar, A., and Sillanpää, M., 2011, Heavy metals adsorption by novel EDTA-modified chitosan–silica hybrid materials, J. Colloid Interface Sci., 358 (1), 261–267.

[9] Yunianti, S., and Maharani, D.K., 2012, Pemanfaatan membran kitosan-silika untuk menurunkan kadar ion logam Pb(II) dalam larutan, U. J. Chem., 1 (1), 108–115.

[10] Samadi-Maybodi, A., and Rezaei, V., 2014, A new sol–gel optical sensor with nonporous structure for determination of trace zinc, Sens. Actuators, B, 199, 418–423.

[11] Liu, X., Xie, L., and Li, H., 2012, Electrochemical biosensor based on reduced graphene oxide and Au nanoparticles entrapped in chitosan/silica sol–gel hybrid membranes for determination of dopamine and uric acid, J. Electroanal Chem., 682, 158–163.

[12] Yari, A., and Abdoli, H.A., 2010, Sol–gel derived highly selective optical sensor for sensitive determination of the mercury(II) ion in solution, J. Hazard. Mater., 178 (1-3), 713–717.

[13] Rajesh, N., and Manikandan, S., 2008, Spectrophotometric determination of lead after preconcentration of its diphenylthiocarbazone complex on an Amberlite XAD-1180 column, Spectrochim. Acta, Part A, 70 (4), 754–757.

[14] Scindia, Y.M., Pandey, A.K., Reddy, A.V.R., and Manohar, S.B., 2004, Chemically selective membrane optode for Cr(VI) determination in aqueous samples, Anal. Chim. Acta, 515 (2), 311–321.

[15] Harmita, 2004, Petunjuk pelaksanaan validasi metode dan cara perhitungannya, Majalah Ilmu Kefarmasian, 1 (3), 117–135.

[16] Purwanto, A., Supriyanto, C., and Samin, P., 2007, Validasi pengujian Cr, Cu, dan Pb dengan metode spektrometri serapan atom, Proceeding PPI-PDIPTN, Pustek Akselerator dan Proses Bahan-BATAN, Yogyakarta, 10 July 2007.

[17] Al-Sagheer, F., and Muslim, S., 2010, Thermal and mechanical properties of chitosan/SiO2 hybrid composites, J. Nanomater., 2010, 1–7.

[18] Lee, E.J., Shin, D.K., Kim, H.E., Kim, H.W., Koh, Y.H., and Jang, J.H., 2009, Membrane of hybrid chitosan–silica xerogel for guided bone regeneration, Biomaterials, 30 (5), 743–750.

[19] Taba, P., Natsir, H., Fauziah, St., and Ismail, M., 2010, Adsorpsi ion Cd(II) oleh kitosan-silika mesopori MCM-48, Marina Chim. Acta, 11 (1), 13–22.

[20] Mudasir, Raharjo, G., Tahir, I., and Wahyuni, T., 2008, Immobilization of dithizone onto chitin isolated from prawn seawater shells (P. merguensis) and its preliminary study for the adsorption of Cd(II) ion, J. Phys. Sci. 19 (1), 63–78.

[21] Rashidova, S.Sh., Shakarova, D.Sh., Ruzimuradov, O.N., Satubaldieva, D.T., Zalyalieva, S.V., Shpigun, O.A., Varlamov, V.P., and Kabulov, B.D., 2004, Bionanocompositional chitosan-silica sorbent for liquid chromatography, J. Chromatogr. B, 800 (1-2), 49–53.

[22] Jerónimo, P.C.A., Araújo, A.N., and Montenegro, M.C.B.S.M., 2007, Optical sensors and biosensors based on sol–gel films, Talanta, 72 (1), 13-27.

[23] Lang, L., Chiu, K., and Lang, Q., 2008, Spectrophotometric determination of lead, Pharm. Technol., 32 (4), 74–83.

[24] Clesceri, L.S., Greenberg, A.E., and Eaton, A.D., Standard Methods for the Examination of Water and Wastewater, 20th ed., American Public Health Association, Washington DC.

[25] Tavallali, H., and Dorostghoal, L., 2014, Design and evaluation of a Lead(II) optical sensor based on immobilization of dithizone on triacetylcellulose membrane, Int. J. ChemTech Res., 6 (5), 3179–3186.

[26] Feldsine, P., Abeyta, C., and Andrews, W.H., 2002, AOAC International methods committee guidelines for validation of qualitative and quantitative food microbiological official methods of analysis, J. AOAC Int., 85 (5), 1187–1200.

[27] Van Staden, J.F., and Taljaard, R.E., 2007, Determination of Lead(II), Copper(II), Zinc(II), Cobalt(II), Cadmium(II), Iron(III), Mercury(II) using sequential injection extractions, Talanta, 64 (5), 1203–1212.



DOI: https://doi.org/10.22146/ijc.23560

Article Metrics

Abstract views : 4172 | views : 3997


Copyright (c) 2017 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.