Synthesis of Polyurethane/Silica Modified Epoxy Polymer Based on 1,3-Propanediol for Coating Application

https://doi.org/10.22146/ijc.22321

Lutviasari Nuraini(1*), Evi Triwulandari(2), Muhammad Ghozali(3), Muhammad Hanafi(4), Jumina Jumina(5)

(1) Research Center for Metallurgy and Material, Indonesian Institute of Sciences, Kawasan Puspiptek Serpong, Tangerang Selatan 15314, Banten Indonesia
(2) Research Center for Chemistry, Indonesian Institute of Sciences, Kawasan Puspiptek Serpong, Tangerang Selatan 15314, Banten Indonesia
(3) Research Center for Chemistry, Indonesian Institute of Sciences, Kawasan Puspiptek Serpong, Tangerang Selatan 15314, Banten Indonesia
(4) Research Center for Chemistry, Indonesian Institute of Sciences, Kawasan Puspiptek Serpong, Tangerang Selatan 15314, Banten Indonesia
(5) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(*) Corresponding Author

Abstract


Studies on the synthesis of polyurethane/silica modified epoxy polymer using 1,3-propanediol has been conducted. Synthesis of polymers made by reaction of tolonate and 1,3-propanediol (ratio NCO/OH=2.5) as the building blocks of polyurethane with diglycidyl ether bisphenol A (DGEBA) epoxy and catalyst dibutyltin dilaurate (DBTL).The total weight of the polyurethane used was 20% (w/w) of the total epoxy. Based on Fourier Transform Infrared (FTIR) and 1H-Nuclear Magnetic Resonance (1H-NMR) spectra indicated the existence of a new bond that is formed from the reaction of isocyanate group and hydroxyl group, where the hydroxyl groups derived from epoxy and 1,3-propanediol. The addition of silica (5, 10, and 15% w/w to epoxy) into the epoxy-modified polyurethane has been carried out through sol-gel reaction of tetraethyl orthosilicate (TEOS). The isocyanate conversion rate for the addition of silica 5, 10, and 15% are 95.69; 100, and 100%, respectively. The morphology and element identification by Scanning Electron Microscopy/Energy Dispersive X-Ray Analysis (SEM/EDX), showed that Si element has been successfully added in the polymer. From the tensile strength and elongation analysis, also thermal stability analysis using Thermal Gravimetric Analyzer (TGA), the increase of silica amount into the polyurethane modified epoxy did not significantly affect to thermal properties, but decrease the tensile strength of the polymer.


Keywords


epoxy; polyuretane; silica; 1,3-propanediol

Full Text:

Full Text PDF


References

[1] Dodiuk, H. and Kenig, S., 1994, Low temperature curing epoxies for structural repair, Prog. Polym. Sci., 19 (3), 439–467.

[2] Song, G., and Atrens, A., 1999, Corrosion mechanisms of magnesium alloys, Adv. Eng. Mater., 1(1), 11–33.

[3] Jin, F.L., Li, X., and Park, S.J., 2015, Synthesis and application of epoxy resins: A review, J. Ind. Eng. Chem., 29, 1–11.

[4] Navarchian, A.H., Joulazadeh, M., and Karimi, F., 2014, Investigation of corrosion protection performance of epoxy coatings modified by polyaniline/clay nanocomposites on steel surfaces, Prog. Org. Coat., 77 (2), 347–353.

[5] Mostafaei, A., and Nasirpouri, F., 2014, Epoxy/polyaniline–ZnO nanorods hybrid nanocomposite coatings: Synthesis, characterization and corrosion protection performance of conducting paints, Prog. Org. Coat., 77 (1), 146–159.

[6] Wua, G.M., Kong, Z.W., Chen, J., Huo, S.P., and Liu, G.F., 2014, Preparation and properties of waterborne polyurethane/epoxy resin composite coating from anionic terpene-based polyol dispersion, Prog. Org. Coat., 77 (2), 315–321.

[7] Wazarkar, K., Kathalewar, M., and Sabnis, A., 2016, Development of epoxy-urethane hybrid coatings via non-isocyanate route, Eur. Polym. J., 84, 812–827.

[8] Lin, J., Wu, X., Zheng, C., Zhang, P., Huang, B., Guo, N., and Jin, L.Y., 2014, Synthesis and properties of epoxy-polyurethane/silica nanocomposites by a novel sol method and in-situ solution polymerization route, Appl. Surf. Sci., 303, 67–75.

[9] Chrusciel, J.J., and Lesniak, E., 2015, Modification of epoxy resins with functional silanes, polysiloxanes, silsesquioxanes, silica and silicates, Prog. Polym. Sci., 41, 67–121.

[10] Zandi-zand, R., Ershad-langroudi, A., and Rahimi, A., 2005, Silica based organic–inorganic hybrid nanocomposite coatings for corrosion protection, Prog. Org. Coat., 53 (4), 286–291.

[11] Tavandashti, N.P., Sanjabi, S., and Shahrabi, T., 2009, Corrosion protection evaluation of silica/epoxy hybrid nanocomposite coatings to AA2024, Prog. Org. Coat., 65 (2), 182–186.

[12] Corcione, C.E., Striani, R., and Frigione, M., 2014, Organic–inorganic UV-cured methacrylic-based hybrids as protective coatings for different substrates, Prog. Org. Coat., 77 (6), 1117–1125.

[13] Ahmad, Z., and Al-Sagheer, F., 2015, Novel epoxy–silica nano-composites using epoxy-modified silica hyper-branched structure, Prog. Org. Coat., 80, 65–70.

[14] Figueira, R.B., Silva, C.J.R., and Pereira, E.V., 2015, Organic–inorganic hybrid sol–gel coatings for metal corrosion protection: A review of recent progress, J. Coat. Technol. Res., 12 (1), 1–35.

[15] Wang, D., and Bierwagen, G.P., 2009, Sol–gel coatings on metals for corrosion protection, Prog. Org. Coat., 64 (4), 327–338.

[16] Chattopadhyay, D.K., Muehlberg, A.J., and Webster, D.C., 2008, Organic–inorganic hybrid coatings prepared from glycidyl carbamate resins and amino-functional silanes, Prog. Org. Coat., 63 (4), 405–415.

[17] Balgude, D., and Sabnis, A., 2012, Sol–gel derived hybrid coatings as an environment friendly surface treatment for corrosion protection of metals and their alloys, J. Sol-Gel Sci. Technol., 64 (1), 124–134.

[18] Zheng, S.X., and Li, J.H., 2010, Inorganic–organic sol gel hybrid coatings for corrosion protection of metals, J. Sol-Gel Sci. Technol., 54 (2), 174–187.

[19] Petrovic, Z.S., and Ferguson, J., 1991, Polyurethane elastomers, Prog. Polym. Sci., 16 (5), 695–836.

[20] Triwulandari, E., and Ghozali, M., 2013, Pembuatan epoksi termodifikasi poliuretan dari poliol akrilik dengan variasi suhu dan komposisi poliuretan, Jurnal Sains Materi Indonesia, 14 (2), 120–124.

[21] Ghozali, M., Saputra, A.H., Triwulandari, E., and Haryono, A., 2014, Modifikasi epoksi dengan poliuretan tanpa melalui tahap prepolimer poliuretan, Jurnal Sains Materi Indonesia, 15 (4), 208–213.

[22] Ghozali, M., Triwulandari, E., and Haryono, A., 2015, Preparation and characterization of polyurethane-modified epoxy with various types of polyol, Macromol. Symp., 353 (1), 154–160.

[23] Bakhshandeh, E., Jannesari, A., Ranjbar, Z., Sobhani, S., and Saeb, M.R., 2014, Anti-corrosion hybrid coatings based on epoxy–silica nanocomposites: Toward relationship between the morphology and EIS data, Prog. Org. Coat., 77, 1169–1183.

[24] Chattopadhyay, D.K., and Raju, K.V.S.N., 2007, Structural engineering of polyurethane coatings for high performance applications, Prog. Polym. Sci., 32 (3), 352–418.

[25] Nikolic, G., Zlatkovic, S., Cakic, M., Cakic, S., Lacnjevac, C., and Rajic, Z., 2010, Fast Fourier transform IR characterization of epoxy GY systems crosslinked with aliphatic and cycloaliphatic EH polyamine adducts, Sensors, 10 (1), 684–696.

[26] Cholake, S.T., Mada, M.R., Raman, R.K.S., Bai, Y., Zhao, X.L., Rizkalla, S., and Bandyopadhyay, S., 2014, Quantitative analysis of curing mechanisms of epoxy resin by mid- and near-Fourier Transform Infra Red Spectroscopy, Def. Sci. J., 64 (3), 314–321.

[27] Milea, C.A., Bogatu, C., and Duţă, A., 2011, The Influence of Parameters in Silica Sol-Gel Process, Bull. Transilv. Univ. Braşov Ser. I, 4 (53), 59–66.

[28] Prabu, A.A., and Alagar, M., 2004, Mechanical and thermal studies of intercross-linked networks based on siliconized polyurethane-epoxy/unsaturated polyester coatings, Prog. Org. Coat., 49 (3), 236–243.

[29] Gireesh, K.B., Jena, K.K., Allauddin, S., Radhika, K.R., Narayan, R., and Raju, K.V.S.N., 2010, Structure and Thermo-mechanical Properties study of polyurethane-urea/glycidoxypropyltrimethoxysilane hybrid coatings, Prog. Org. Coat., 68 (3), 165–172.

[30] Ahmad, S., Gupta, A.P., Sharmin, E., Alam, M., and Pandey, S.K., 2005, Synthesis, characterization and development of high performance siloxane-modified epoxy paints, Prog. Org. Coat., 54, 248–255.



DOI: https://doi.org/10.22146/ijc.22321

Article Metrics

Abstract views : 3604 | views : 3662


Copyright (c) 2017 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.