SYNTHESIS AND CHARACTERIZATION OF CdS IN DIOL VANILIN LIQUID CRYSTAL MONOMER

https://doi.org/10.22146/ijc.21687

H. L. Lee(1*), M. Abu Bakar(2), J. Ismail(3), A.M. Issam(4)

(1) Nanoscience Research Laboratory, School of Chemical Sciences, University Sains Malaysia, 11800 Penang, Malaysia
(2) Nanoscience Research Laboratory, School of Chemical Sciences, University Sains Malaysia, 11800 Penang, Malaysia
(3) Nanoscience Research Laboratory, School of Chemical Sciences, University Sains Malaysia, 11800 Penang, Malaysia
(4) School of Industrial Technology, University Sains Malaysia, 11800 Penang, Malaysia
(*) Corresponding Author

Abstract


Nanocomposites comprising diol-vanilin and cadmium sulfide (CdS) has been synthesized via chemical precipitation method in ethanol at refluxed temperature (160 oC) for 12 hours. CdCl2. 2.5H2O and thiourea as cadmium and sulfide precursors respectively were employed. Diol vanilin is a thermotropic liquid crystal monomer which exhibits enantiotropic nematic metaphase texture when observed under polarizing microscope and confirmed by DSC thermal stability study. A series of different mass composition  of diol vanilin and CdS nanocomposites ranging from  0.1:1.0 till 1.0:1.0(w/w) were prepared and characterized using XRD, TEM, SEM-EDX, POM and DSC. The X-ray diffraction pattern (XRD) showed broad peaks due to the formation of cubic CdS nanoparticles in diol vanilin matrix. The nanocomposites at low mass composition  of CdS still maintained their nematic phase. However, the liquid crystal property was affected when the mass  composition  of CdS in nanocomposite was increased and the liquid crystal characteristic vanished when the mass composition  was at 0.6:1.0.


Keywords


CdS; diol vanilin; thermotropic liquid crystal; nanocomposite

Full Text:

Full Text PDF


References

[1] Liu, S.H., Qian, A.X.F., Yin, J., Ma, X.D., Yuan, J.Y., and Zhu, Z.K., 2003, J. Phys. & Chem. Solids, 64, 544-458.

[2] Favero, P.P., Souza-Parise, M.D.,Fernandez, J.L.R., and Miotto, R., 2006, Braz. J. Phys., 36(3B), 1032-1034.

[3] Sedaghat, Z., Taghavinia, N., and Marandi, M., 2006, Nanotechn., 17, 3812-3816.

[4] Nosaka, Y., Yamaguchi, K., Kuwabara, A., Miyama, H., Baba, R., and Fujishima, A.J., 1992, Photochem. & Photobiol. A: Chem., 64(3), 375-382.

[5] Murakoshi, K., Hosokawa, H., Saitoh, M., Wada, Y., Sakata, T., Mori, H., Satoh, M., and Yanagida, S., 1998, J. Chem. Soc., Faraday Trans., 94(5), 579-586.

[6] El-Tantawy, F., Abdel-Kader, K.M., Kaneko, F., and Sung, Y.K., 2004, Eur. Polym. J., 40(2), 415-430.

[7] Wang, Y., and Herron, N., 1992, Chem. Phys. Lett., 200(1-2), 71-75.

[8] Antolini, F., Pentimalli, M., Di Luccio, T., Terzi, R., Schioppa, M., Re, M., Mirenghi, L., and Tapfer, L., 2005, Mater. Lett., 59(24-25), 3181-3187.

[9] Chang, J.-H., Seo, B.-S., and Hwang, D.-H., 2002, Polymer, 43(10), 2969-2974.

[10] Huang, W., and Han, C.D., 2006, Polymer, 47(12), 4400-4410.

[11] Khiew, P.S., Huang, N.M., Radiman, S., and Ahmad, M.S., 2004, Mater. Lett., 58(3-4), 516-521.

[12] Khiew, P.S., Radiman, S., Huang, N.M., and Soot M., 2003, J. Cryst. Growth, 254(1-2), 235-243.

[13] Nandakumar, P., Vijayan, C., Rajalakshmi, M., Arora, A.K., and Murti, Y.V.G.S., 2001, Phys. E: Low-dimensional Syst. & Nanostruct., 11(4), 377-383.



DOI: https://doi.org/10.22146/ijc.21687

Article Metrics

Abstract views : 1234 | views : 906


Copyright (c) 2010 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.