AB INITIO STUDY OF AMMONIA CLUSTERS: (NH3)n (n = 2-6)

https://doi.org/10.22146/ijc.21595

Herudi Kandau(1), Hanggara Sudrajat(2*), Andreas Napitupulu(3), Syahrul Khairi(4), Zaky Al-Fatony(5), Herman Siagian(6)

(1) Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara Yogyakarta 55281
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281
(3) Department of Physical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika No. 2 Yogyakarta 55281
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281
(5) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281
(6) Physics Education Department, Faculty of Mathematics and Natural Sciences, State University of Yogyakarta, Karangmalang, Depok, Yogyakarta 55283
(*) Corresponding Author

Abstract


Hydrogen bonded neutral clusters of ammonia, (NH3)n (n = 2-6), have been theoretically investigated employing the D95++(d,p) (and wherever necessary, higher) basis sets at the Hartree-Fock (HF) level as well as with second-order Møller-Plesset (MP2) perturbation theory. While the ammonia trimer and tetramer exhibit perfect molecular symmetries and are nonpolar, the pentamer and hexamer both optimize with slight deviations from perfect symmetries and are seen to posses marginal, but nonzero dipole moments. The (NH3)nlinear clusters are seen to be chemically softer than the corresponding cyclic ones.


Keywords


ab initio calculation; ammonia clusters; Hartree-Fock; Møller-Plesset

Full Text:

Full Text Pdf


References

[1] Kryachko, E.S., 1997, Chem. Phys. Lett, 272, 132.

[2] Kim, J., Majundar, D., Lee, H.M., and Kim, K.S., 199, J. Chem. Phys, 110, 9128.

[3] Sadlej, J., Kzimirski, J.K., and Buck, U., 1999, J. Phys. Chem. A, 103, 4933.

[4] Smith, D.M.A., Smets, J., Elkadi, L., and Adamowicz, 1998, J. Chem. Phys, 109, 1238.

[5] Kulkarni, S.A., Bartolotti, L.J., and Pathak, R.K., 2000, J. Chem. Phys, 113, 2697.

[6] Liu, K., Curzan, J.D., and Saykally, R.J., 1996, Science, 271, 929.

[7] Viant, M.R., Curzan, J.D., Lucas, D.D., and Saykally, R.J., J. Phys. Chem, 1997, 101, 9032.

[8] Odutula, J.A., Dyke, T.R., Howard, B., and Muether, J.S., 1979, J. Chem. Phys, 70, 4884.

[9] Suzer, S., and Andrews, L., 1987, J. Chem. Phys, 87, 5131.

[10] Hirao, K., Fujikawa, T., Hinoshi, H., and Yamabe, S., 1984, Chem. Phys. Lett, 104, 184.

[11] Zhu, T., and Yang, W., 1994, Int. J. Quantum Chem, 49, 613.

[12] Cybulski, S.M., 1994, Chem. Phys. Lett, 228, 451.

[13] Olthof, E.H.T., van der Avoird, A., and Wormer, P.E.S., 1994, Chem. Phys, 101, 8430.

[14] Olthof, E.H.T., van der Avoird, A., Wormer, P.E.S., Loesser, J.G., and Saykally, R.J., 1994, J. Chem. Phys, 101, 8443.

[15] Lee, J.S., and Park, S.J., 2000, J. Chem. Phys, 112, 230.

[16] Turner, P.J., and David, C.W., 1981, J. Chem. Phys, 85, 3501.

[17] Novaro, O., Cruz, S., Castillo, S., Kolos, W., and Les, A., 1981, J. Chem. Phys, 74, 1118.

[18] Sadlej, J., Moszynski, M., Doborowski, J., and Mazurek, A.P., 1999, J. Phys. Chem. A, 103, 8529.

[19] Firanescu, G., Luckhaus, D., and Signorell, R., 2006, J. Chem. Phys., 125, 14501.

[20] Dykstra, C.E., and Andrews, L., 1990, J. Chem. Phys. 92, 6043.

[21] Card, D.A., Folmer, D.E., Sato, S., Buzza, S.A., and Castleman Jr, A.W., 1997, J. Phys. Chem. A, 101, 3417.

[22] Babalev, N.K., and Lakhbo, V.K., 1985, Chem. Phys. Lett., 240, 585.

[23] Barnett, R.N., Landman, U., Cleveland, C.L., and Kestner, K.R., 1988, Chem. Phys. Lett, 148, 249.

[24] Desfrancois, C., Lisfi, A., and Schermann, J.P., 1992, Z. Phys. D; Atoms Mols. Clust, 24, 297.

[25] Stampfli, P., 1995, Phys. Reports, 255, 1.

[26] Freudenberg, T., Stert, V., Radloff, W., Ringling, J., Korn, G., and Hertel, V., 1997, Chem. Phys. Lett, 269, 523.

[27] Wei, S., Purnell, J., Buzza, S.A., and Castleman Jr, A.W., 1992, J. Chem. Phys, 97, 9480.

[28] Shinohara, H., Nishi, N., and Washida, N., 1985, J. Chem Phys, 83, 1989.

[29] Ichihashi, H., Yamabe, J.Y., and Murai, K.., 1996, J. Phys. Chem., 100, 10050.

[30] Park, J.K., 1999, Bull. Korean Chem. Soc, 20, 592.

[31] Kleninger, M., and Suhai, S., 1996, J. Comput. Chem, 17, 1508.

[32] Shin, D.N., DeLeon, R.L., and Garvey, J.F., 1998, J. Phys. Chem. A, 102, 772.

[33] Takasu, R., Hashimoto, K., Okuda, R., and Fuke, K, 1999, J. Phy. Chem. A, 103, 349.

[34] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., irzewski, V.G., Montgomery, J.A.,Jr., Stratmann, R.E., Burant, J.C., Dapprich, S., Millam, J.M., Daniels, A.D., Kudin, K.N., Strain, M.C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G.A., Ayala, P.Y., Cui, Q., Morokuma, K., Malick, D.K., Rabuck, A. D., Raghavachari, K., Foresman, J.B., Cioslowski, J., Ortiz, J.V., Baboul, A.G., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R.L., Fox, D.J., Keith,T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Andres, J.L., Gonzalez, C., Head-Gordon, M., Replogle, E.S., Pople, J.A., 1998, Gaussian 98, Revision A.7; Gaussian, Inc.: Pittsburgh, PA.

[35] Parr, R.G., and Yang, W., 1989, Density Functional Theory of Atoms and Molecules, Oxford University Press, New York, pp.87.



DOI: https://doi.org/10.22146/ijc.21595

Article Metrics

Abstract views : 1620 | views : 1036


Copyright (c) 2010 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.