EFFECT OF CROSSLINKING TO THE MECHANICAL PROPERTY OF APATITE GELATIN HYBRID FOR BONE SUBSTITUTION PURPOSES

https://doi.org/10.22146/ijc.21391

Sunarso Sunarso(1), Sutarno Sutarno(2), Kanji Tsuru(3), Ika Dewi Ana(4*), Kunio Ishikawa(5)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, Jl. Sekip Utara, Yogyakarta
(3) Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582
(4) Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Jalan Denta 1 Sekip Utara, Yogyakarta 55281
(5) Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582
(*) Corresponding Author

Abstract


The clinical success of current generation of synthetic bone substitute relies on bio-inspired design which has a performance level close to that of natural one. In this context, biomedical approaches are considered very important to result bio-functional hybrid for bone substitution purposes. In this study, effect of cross-linking to the mechanical properties of apatite gelatin hybrid has been investigated. Cross-linking was employed by 1-ethyl-3-3-dimethylaminopropyl carbodiimide (EDC) agent. The EDC agent creates a peptide bond between gelatin molecules inside the hybrid to the cross-linked structure. Cross-linked structure of gelatin increases physical property of the hybrid since it can hold the outer forces longer than that of without cross-linking.

Keywords


cross-linking; hybrid; carbonated hydroxyapatite; gelatin; physical property

Full Text:

Full Text PDF


References

[1] Chang, M.C., Ko, C.C., and Douglas, W.H., 2003, Biomaterials, 24, 2853–2862.

[2] Landi, E., Valentini, F., and Tampieri, A., 2008, Acta Biomater., 4, 1620–1626.

[3] Kikuchi, M., Matsumoto, H.N., Yamada, T., Koyama, Y., Takakuda, K., and Tanaka, J., 2004, Biomaterials, 25, 63–69.

[4] Rault, I., Frei, D., Herbage, N., and Hue, A., 1996, J. Mater. Sci. - Mater. Med., 7, 4, 215–222.

[5] Sabelman, E.E., 1985, Biocompatibility of Tissue Analogs, ed. D.F. Williams, CRC Press, Boca Raton.

[6] Simmons, D.F., and Kearney, J.N., 1993, Biotechnol. Appl. Biochem., 17, 23–29.

[7] Weadock, K., Olsen, R.M., and Silver, F.H., 1984, Biomater. Med. Devices Artif. Organs, 11, 4, 293–318.

[8] Young, S., Wong, M., Tabata, Y., and Mikos, A.G., 2005, J. Controlled Release, 109, 256–274.

[9] Chang, M.C., and Douglas, W.H., 2007, J. Mater. Sci. - Mater. Med., 18, 2045–2051.

[10] Narbat, M.K., Orang, F., Hashtjin, M.S., and Goudarzi, A., 2006, Iran Biomed. J., 10, 4, 215–223.

[11] Kim, H.W., Knowles, J.C., and Kim, H.E., 2005, J. Biomed. Mater. Res. Part B, 74B, 686–698.

[12] Krajewski, A., Mazzocchi, M., Buldini, P.L., Ravaglioli, A., Tinti, A., Taddei, P., and Fagnano, C, 2005, J. Mol. Struct., 744-747, 221–228.

[13] Chang, M.C., 2008, J. Mater. Sci. - Mater. Med., 19, 3411–3418.

[14] Aizawa, M., Ueno, H., Itatani, K., and Okada, I., 2005, J. Eur. Ceram. Soc., 26, 4-5, 501–507.

[15] Nakajima, N., and Ikada, Y., 1995, Bioconjugate Chem., 6, 1, 123–130.

[16] Kuijpers, A.J., Engbers, G.H.M., Feijen, J., De Smedt, S.C., Meyvis, T.K.L., Demeester, J., Krijgsveld, J., Zaat, S.A.J., and Dankert, J., 1999, Macromolecules, 32, 3325–3333.

[17] Zeeman, R., Dijkstra, P.J., Wachem, P.B.V., Luyn, M.J.A.V., Hendriks, M., Cahalan, P.T., and Feijen, J, 1999, Biomaterials, 20, 921–931.



DOI: https://doi.org/10.22146/ijc.21391

Article Metrics

Abstract views : 1852 | views : 1495


Copyright (c) 2011 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.